
1

Building an Efficient Key-Value Store in a
Flexible Address Space

Chen Chen1, Wenshao Zhong1, Xingbo Wu2

1 University of Illinois at Chicago
2 Microsoft Research Cambridge

● The backbone of widely used Internet-based services

KV Stores

2

● The backbone of widely used Internet-based services
● Simple interface

○ db.put(“foo”, “abcd”)
○ db.put(“bar”, 0xbee)
○ db.put(“cat”, 2022)
○ db.get(“cat”) => 2022
○ db.scan(“c”, 2) => {“cat”: 2022, “foo”: “abcd”}

KV Stores

3

Point Query

Range Query

Write

● The backbone of widely used Internet-based services
● Simple interface

○ db.put(“foo”, “abcd”)
○ db.put(“bar”, 0xbee)
○ db.put(“cat”, 2022)
○ db.get(“cat”) => 2022
○ db.scan(“c”, 2) => {“cat”: 2022, “foo”: “abcd”}

● Major KV stores manage sorted data for range queries

KV Stores

4

Point Query

Range Query

Write

Managing Sorted Data

● Storing sorted data in structured files

5

(Simplified) File foo abcdbar 0xbee cat 2022

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

6

(Simplified) File foo abcdbar 0xbee cat 2022

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

7

(Simplified) File foo abcdbar 0xbee cat 2022

art 18

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

8

(Simplified) File foo abcdbar 0xbee cat 2022

art 18

Rewrite the whole file

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes

9

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections

10

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

IndirectionApplication

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections
■ Unordered file but sorted index for all keys

11

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

IndirectionApplication

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections
■ Unordered file but sorted index for all keys

12

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

IndirectionApplication

Maintaining large index

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections
■ Unordered file but sorted index for all keys
■ Indexing sorted leaf nodes (e.g., B+-Tree)

Log-structured sort-merge approach (e.g., LSM)

13

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

IndirectionApplication

Maintaining large index

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections
■ Unordered file but sorted index for all keys
■ Indexing sorted leaf nodes (e.g., B+-Tree)

Log-structured sort-merge approach (e.g., LSM)

14

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

IndirectionApplication

Maintaining large index

Repeated rewrites

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections
■ Unordered file but sorted index for all keys
■ Indexing sorted leaf nodes (e.g., B+-Tree)

Log-structured sort-merge approach (e.g., LSM)

15

(Simplified) File foo abcdbar 0xbee cat 2022 art 18

IndirectionApplication

Maintaining large index

Semantic gap:
Cannot insert data in-place

Repeated rewrites

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

16

(Simplified) File foo abcdbar 0xbee cat 2022

Address Space 0 3 11 14 22 25 29

What if we can sort data here?

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space

17

insert shift

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space

18

insert shift

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

Straightforward

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

19

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes

20

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

Logical offset -> physical address

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes

21

Updating O(N) extents’ metadata

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes

22

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

3 orders of magnitude gap

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
■ Rigid block alignment requirements

23

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
■ Rigid block alignment requirements
■ Inability to track shifting data

24

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

The offsets can easily change

Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
■ Rigid block alignment requirements
■ Inability to track shifting data

25

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

A more flexible storage abstraction to
manage sorted data!

Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

26

Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● Challenges
○ Inefficient shifting in extent index
○ Rigid block alignment requirements
○ Inability to track shifting data

27

Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● Challenges => The Solution
○ Inefficient shifting in extent index => Index structure with efficient shifting
○ Rigid block alignment requirements => No alignment requirements
○ Inability to track shifting data => Managing shifting data

28

Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● The solution:

Managing shifting data

No alignment requirements
Index with efficient shifting

29

FlexDB

FlexSpace
FlexTree

Persistent
Address
Space

Application

Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● The solution:

Managing shifting data

No alignment requirements
Index with efficient shifting

30

FlexDB

FlexSpace
FlexTree

Persistent
Address
Space

Application

Starting from B+-Tree

● When managing an address space using a B+-Tree

31

51

23 64

0 23 51 64

Keys are
logical offsets

Starting from B+-Tree

● When managing an address space using a B+-Tree

32

51

23 64

0 23 51 64

Keys are
logical offsets

Starting from B+-Tree

● When managing an address space using a B+-Tree

33

51

23 64

0 23 51 64

Insert a new extent
(length = 10) at offset 0

Keys are
logical offsets

Starting from B+-Tree

● When managing an address space using a B+-Tree

34

51

23 64

23 51 64

Insert a new extent
(length = 10) at offset 0

0Insert

Starting from B+-Tree

● When managing an address space using a B+-Tree

35

51

23 64

0 23 51 64

Insert a new extent
(length = 10) at offset 0

0

+10

+10 +10

+10 +10 +10 +10

Shift

FlexTree: Structure

● An index structure derived from B+-Tree
○ A new metadata representation scheme

36

51

23 64

0 23 51 64

FlexTree: Structure

● An index structure derived from B+-Tree
○ A new metadata representation scheme

37

51+0 +0

23+0 +0 64+0 +0

0 23 51 64

A shift value associated
with a pointer

FlexTree: Structure

● An index structure derived from B+-Tree
○ A new metadata representation scheme

38

51+0 +0

23+0 +0 64+0 +0

0 23 51 64

23 + (+0) + (+0) = 23

Adding all the shift
values on the path

A shift value associated
with a pointer

FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme

39

51+0 +0

23+0 +0 64+0 +0

0 23 51 64

Insert a new extent
(length = 10) at offset 0

FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme

40

51+0 +0

23+0 +0 64+0 +0

0 23 51 640Insert

FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme

41

51+0 +0

23+0 +0 64+0 +0

0 23 51 640

Shift

+10

+10 +10

+10 +10

FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme

42

61+0

33+0 64+0 +0

0 23 51 6410

Shift

+10

+10

Nodes on the path updated
-> O(logN) cost

Logical logging

FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme

43

61+0

33+0 64+0 +0

0 23 51 6410

Shift

+10

+10

23 + (+10) + (+0) = 33

FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme

44

61+0

33+0 64+0 +0

0 23 51 6410

Shift

+10

+10

51 + (+0) + (+10) = 61

search key = 61

search key = 51

search key = 51

Based on FlexTree

● FlexSpace: Log-structured data storage indexed by FlexTree
○ Supporting read/write/insert-range operations etc.

● FlexDB: Keeping all KV pairs sorted in a FlexSpace

45

FlexDB

● Keeping all KV pairs sorted in a flexible address space

46

Flexible Address Space

Key Space

Device Address Space

FlexTree

Sparse
Index

ink

FlexDB: Sparse Index

● Managing sorted keys in intervals

4747

FlexSpace foo abcdbar 0xbee cat 2022

Address Space 0 3 11 14 22 25 29

…Interval 1 Interval 2 Interval 3

ink

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

4848

FlexSpace foo abcdbar 0xbee cat 2022

Address Space 0 3 11 14 22 25 29

foo+0 +0

cat0 11 ink22 29

ink

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

4949

FlexSpace foo abcdbar 0xbee cat 2022

Address Space 0 3 11 14 22 25 29

foo+0 +0

cat0 11 ink22 29

Inserting a new key
“bot” into an interval

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

5050

FlexSpace bar 0xbee

Address Space 0 3 11 14 22 25 33

foo+0

cat0 11 ink22 29

Inserting a new key
“bot” into an interval

inkfoo abcdcat 2022bot 0xfff

36 40

+0

+11

+11

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

5151

FlexSpace bar 0xbee

Address Space 0 3 11 14 22 25 33

foo+0

cat0 22 ink22 29

Inserting a new key
“bot” into an interval

inkfoo abcdcat 2022bot 0xfff

36 40

+11

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

5252

FlexSpace bar 0xbee

Address Space 0 3 11 14 22 25 33

foo+0

cat0 22 ink22 29

inkfoo abcdcat 2022bot 0xfff

36 40

+11

Elastic
In-memory

Easy recovery

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

FlexDB: Sparse Index

5353

FlexSpace bar 0xbee

Address Space 0 3 11 14 22 25 33

inkfoo abcdcat 2022bot 0xfff

36 40

Extent ExtentExtent

?

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

FlexDB: Sparse Index

5454

FlexSpace bar 0xbee

Address Space 0 3 11 14 22 25 33

inkfoo abcdcat 2022bot 0xfff

36 40

Extent Extent Extent

flexspace_read_extent(fs, 30)
-> extent at 22

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

FlexDB: Sparse Index

5555

FlexSpace bar 0xbee

Address Space 0 3 11 14 22 25 33

inkfoo abcdcat 2022bot 0xfff

36 40

cat0 22

Recap

● FlexTree enables lightweight data insertions in a flexible
address space.

● FlexDB manages sorted data without using extra persistent
indirections.

56

Evaluation: Setup

● Intel Xeon Silver 4210 w/ 10 cores
● 64GB RAM
● Optane 905P SSD
● Key-Value Sizes:

○ ZippyDB: 91 bytes *

○ UDB: 154 bytes *

○ SYS: 424 bytes **

● 4 Client Threads

57

* Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. “Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook”. In: 18th USENIX
Conference on File and Storage Technolo gies (FAST’20). 2020, pp. 209–223.
** Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. “Workload Analysis of a Large-Scale Key-Value Store”. In: SIGMETRICS Per form. Eval. Rev. 40.1
(2012), pp. 53–64.

Evaluation: Disk I/O

❏ Write 64GB into an empty store; Zipfian distribution

58

❏ Starting from a 500GB UDB store; Zipfian distribution

Evaluation: YCSB

59

Write
Mostly

Read
Only

Read
Latest

Scan
Mostly

Read-modify-write
(RMW)

Read
Mostly

60 sec per
workload

❏ Starting from a 500GB UDB store; Zipfian distribution

Evaluation: YCSB

60

Write
Mostly

Read
Only

Read
Latest

Scan
Mostly

Read-modify-write
(RMW)

Read
Mostly

60 sec per
workload

50% Update
50% Read

❏ Starting from a 500GB UDB store; Zipfian distribution

Evaluation: YCSB

61

Write
Mostly

Read
Only

Read
Latest

Scan
Mostly

Read-modify-write
(RMW)

Read
Mostly

60 sec per
workload

5% Update
95% Read

❏ Starting from a 500GB UDB store; Zipfian distribution

Evaluation: YCSB

62

Write
Mostly

Read
Only

Read
Latest

Scan
Mostly

Read-modify-write
(RMW)

Read
Mostly

60 sec per
workload

5% Insert
95% Scan

Summary

● Flexible address space enables lightweight data management.
● FlexDB achieves low WA and high throughput.

● The code of this project is available at:
https://github.com/flexible-address-space/flexspace

63

https://github.com/flexible-address-space/flexspace

