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● The backbone of widely used Internet-based services
● Simple interface
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● The backbone of widely used Internet-based services
● Simple interface

○ db.put(“foo”, “abcd”)
○ db.put(“bar”, 0xbee)
○ db.put(“cat”, 2022)
○ db.get(“cat”) => 2022
○ db.scan(“c”, 2) => {“cat”: 2022, “foo”: “abcd”}

● Major KV stores manage sorted data for range queries

KV Stores
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Managing Sorted Data

● Storing sorted data in structured files
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)
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Rewrite the whole file



Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes
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● How to commit new data? e.g., db.put(“art”, 18)
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ Common approach: append writes + indirections
■ Unordered file but sorted index for all keys
■ Indexing sorted leaf nodes (e.g., B+-Tree)

Log-structured sort-merge approach (e.g., LSM)
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IndirectionApplication

Maintaining large index

Semantic gap:
Cannot insert data in-place

Repeated rewrites



Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)
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What if we can sort data here?



Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

19

(Simplified) File

Address Space

art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40



Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
■ Rigid block alignment requirements
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
■ Rigid block alignment requirements
■ Inability to track shifting data
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Managing Sorted Data

● Storing sorted data in structured files
● How to commit new data? e.g., db.put(“art”, 18)

○ In-place updates by sorting in the address space
○ Existing effort: insert-range and collapse-range (ext4, XFS, F2FS …)

■ Inefficient shifting in extent indexes
■ Rigid block alignment requirements
■ Inability to track shifting data
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art 18 bar 0xbee foo abcdcat 2022

0 3 11 14 22 25 33 36 40

A more flexible storage abstraction to 
manage sorted data!



Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space
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Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● Challenges                               => The Solution
○ Inefficient shifting in extent index => Index structure with efficient shifting
○ Rigid block alignment requirements => No alignment requirements
○ Inability to track shifting data => Managing shifting data
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Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● The solution:

Managing shifting data

No alignment requirements
Index with efficient shifting
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Our Idea: Flexible Address Space

● Lightweight in-place insertions and deletions
○ Sorting data easily in the address space

● The solution:

Managing shifting data

No alignment requirements
Index with efficient shifting
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Starting from B+-Tree

● When managing an address space using a B+-Tree
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Starting from B+-Tree

● When managing an address space using a B+-Tree
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Starting from B+-Tree

● When managing an address space using a B+-Tree
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FlexTree: Structure

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Structure

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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FlexTree: Operations

● An index structure derived from B+-Tree
○ A new metadata representation scheme
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Based on FlexTree

● FlexSpace: Log-structured data storage indexed by FlexTree
○ Supporting read/write/insert-range operations etc.

● FlexDB: Keeping all KV pairs sorted in a FlexSpace
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FlexDB

● Keeping all KV pairs sorted in a flexible address space
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Flexible Address Space

Key Space

Device Address Space
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Sparse 
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ink

FlexDB: Sparse Index

● Managing sorted keys in intervals
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ink

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval
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ink

FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval
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FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval
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FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval
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FlexDB: Sparse Index

● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval
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foo+0
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inkfoo abcdcat 2022bot 0xfff

36 40
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Elastic
In-memory

Easy recovery



● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

FlexDB: Sparse Index
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● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

FlexDB: Sparse Index
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● Managing sorted keys in intervals
● Indexing the first key (anchor) in each interval

FlexDB: Sparse Index
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Address Space 0 3 11 14 22 25 33
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cat0 22



Recap

● FlexTree enables lightweight data insertions in a flexible 
address space.

● FlexDB manages sorted data without using extra persistent 
indirections.
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Evaluation: Setup

● Intel Xeon Silver 4210 w/ 10 cores
● 64GB RAM
● Optane 905P SSD
● Key-Value Sizes:

○ ZippyDB: 91 bytes *

○ UDB: 154 bytes *

○ SYS: 424 bytes **

● 4 Client Threads
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* Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. “Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook”. In: 18th USENIX 
Conference on File and Storage Technolo gies (FAST’20). 2020, pp. 209–223.
** Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. “Workload Analysis of a Large-Scale Key-Value Store”. In: SIGMETRICS Per form. Eval. Rev. 40.1 
(2012), pp. 53–64.



Evaluation: Disk I/O

❏ Write 64GB into an empty store; Zipfian distribution
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❏ Starting from a 500GB UDB store; Zipfian distribution

Evaluation: YCSB
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❏ Starting from a 500GB UDB store; Zipfian distribution

Evaluation: YCSB
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Summary

● Flexible address space enables lightweight data management.
● FlexDB achieves low WA and high throughput.

● The code of this project is available at:
https://github.com/flexible-address-space/flexspace
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https://github.com/flexible-address-space/flexspace

