
Building an Efficient Key-Value Store in a Flexible
Address Space

Chen Chen

University of Illinois at Chicago

cchen262@uic.edu

Wenshao Zhong

University of Illinois at Chicago

wzhong20@uic.edu

Xingbo Wu

Microsoft Research

xingbowu@microsoft.com

Abstract
Data management applications store their data using struc-

tured files in which data are usually sorted to serve indexing

and queries. However, in-place insertions and removals of

data are not naturally supported in a file’s address space. To

avoid repeatedly rewriting existing data in a sorted file to

admit changes in place, applications usually employ extra

layers of indirections, such as mapping tables and logs, to

admit changes out of place. However, this approach leads to

increased access cost and excessive complexity.

This paper presents a novel storage abstraction that

provides a flexible address space, where in-place updates of
arbitrary-sized data, such as insertions and removals, can be

performed efficiently. With these mechanisms, applications

can manage sorted data in a linear address space with

minimal complexity. Extensive evaluations show that a key-

value store built on top of it can achieve high performance

and efficiency with a simple implementation.

CCS Concepts: • Information systems → Data struc-
tures; Database management system engines.

Keywords: Address Space, Storage, Key-Value Store

ACM Reference Format:
Chen Chen, Wenshao Zhong, and Xingbo Wu. 2022. Building an

Efficient Key-Value Store in a Flexible Address Space. In Seventeenth
European Conference on Computer Systems (EuroSys ’22), April 5–8,
2022, RENNES, France. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3492321.3519555

1 Introduction
Data management applications store data in files for persis-

tent storage. The data are usually sorted in a specific order

so that they can be correctly and efficiently retrieved in the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00

https://doi.org/10.1145/3492321.3519555

future. However, it is not trivial to make updates such as

insertions and deletions in these files. To commit in-place

updates in a sorted file, existing data may need to be rewrit-

ten to maintain the file’s layout. For example, key-value (KV)

stores such as LevelDB [23] and RocksDB [21] need to merge

and sort KV pairs in their data files periodically, causing

repeated rewriting of existing KV data [26, 38, 46].

It has been conventional wisdom to rewrite data to keep

data sorted and gain a better access locality. By co-locating

logically adjacent data in the storage device, the data can

be quickly accessed in the future with a minimal number

of I/O requests, which is crucial for traditional storage

technologies such as HDDs. However, when managing

data with new storage technologies that provide more

balanced random and sequential I/O performance (e.g., Intel’s

Optane SSDs [29]), the access locality is less of a dominant

performance factor [60]. In this scenario, data rewriting

becomes less beneficial for future accesses but still consumes

enormous CPU and I/O resources [36, 44]. Therefore, it may

not be cost-effective to rewrite data on these devices in

exchange for a better locality. Despite this, data management

applications still need to keep their data logically sorted for

efficient access. An intuitive solution is to relocate data in the

address space logically without physically rewriting them.

However, this is barely feasible because of the lack of support

for logically relocating data in a file’s address space.

In practice, applications pay a high cost to keep data sorted

by using extra indirections. For example, using a B
+
-Tree to

index data needs to rewrite tree nodes on updates. LSM-Trees

rewrite data less aggressively by using a multi-level layout,

which slows down reads due to sort-merging data on the

fly [69]. Additionally, committing changes to these structures

requires extra mechanisms such as barriers and flushes,

which inflates the cost of maintaining crash consistency,

leading to problems like redundant journaling [55, 63]. If the

storage layer can provide support for keeping data logically

sorted, applications can delegate the data organizing jobs

to the storage layer, instead of employing extra persistent

indirections at the application level. To achieve this goal,

the storage layer can provide a flexible address space that
supports in-place data insertions and removals, so that the

data can be easily sorted.

Much effort has been made toward this direction. For

example, a few popular file systems—Ext4, XFS, and F2FS—

have provided insert-range and collapse-range features for

1

https://doi.org/10.1145/3492321.3519555
https://doi.org/10.1145/3492321.3519555
https://doi.org/10.1145/3492321.3519555

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

inserting or removing a range in a file’s address space to

support various types of applications [22, 28]. However, these

mechanisms have not been able to help applications because

of a few fundamental limitations. First of all, they have

rigid block-alignment requirements. For example, inserting

a record of a few bytes into a sorted data file using the insert-
range operation is not allowed. Second, shifting a range

of address mappings is very inefficient with conventional

address space indexes. Inserting an aligned data segment to

a file needs to shift all the existing address mappings after

the insertion point to make room for the new data. The shift

operation has 𝑂 (𝑁) cost (𝑁 is the number of extents or

blocks in the file), which can be very costly due to intensive

metadata updates and journaling. Third, commonly used data

indexing mechanisms cannot keep track of shifted contents

in an address space. For example, indexes using offsets to

locate data are no longer usable because the offsets can be

easily changed by a shift operation. Therefore, a co-design

of applications and the storage layer is necessary to realize

the benefits of managing data in a flexible address space.

This paper introduces FlexSpace, a storage engine that

provides a persistent flexible address space for data manage-

ment applications. The core of FlexSpace is an address space

indexing structure, named FlexTree, that is derived from

the B
+
-Tree structure. In a FlexTree, it takes 𝑂 (log𝑁) time

to perform a shift operation in the address space, which is

asymptotically faster than that of existing index data struc-

tures with 𝑂 (𝑁) cost. We implement FlexSpace as a user-

space library. It adopts log-structured space management for

write efficiency and performs defragmentation based on data

access locality for cost-effectiveness. It also employs logical

logging [50, 67] to commit metadata updates at low cost.

We build FlexDB, a KV store that demonstrates how

to implement efficient data management applications in

a flexible address space. Based on the advanced features

provided by FlexSpace, FlexDB is able to maintain a fully

sorted order of all KV pairs in a persistent flexible address

space without employing complex indirections or intensively

rewriting existing data. In the meantime, it has a simple

structure and a small codebase. That said, FlexDB is a

fully functional KV store that supports regular point and

range query operations. FlexDB also integrates efficient

mechanisms to support caching, concurrent access, and

crash consistency. Evaluation results show that FlexDB

has substantially reduced the data rewriting overheads. It

achieves up to 16× and 3.3× speed-ups for read and write

operations, respectively, compared to two I/O-optimized KV

stores, RocksDB and KVell.

This paper makes three major contributions. First, we

introduce an address space indexing structure, namely

FlexTree, that enables efficient shift operations (§3). Second,

we build FlexSpace to realize a persistent flexible address

space, in which data management applications can perform

high-speed in-place data insertions and removals (§4). Third,

0 128 256 384 512 640 768 896 1024
Number of 1MB data written

100
101
102
103
104
105
106

O
ps

/s
ec

PWRITE INSERT-RANGE

Figure 1. Performance of random write/insert on Ext4

we use FlexDB to demonstrate a performant KV store that

can be easily built based on a flexible address space (§5).

Furthermore, we thoroughly evaluate the efficacy of a flexible

address space and its usage for data management (§6).

2 Limitations of File Address Spaces
Modern file systems use extents to manage file address

mappings. An extent is a group of contiguous blocks. Its

metadata consists of three essential elements—file offset,

length, and block number. Real-world file systems employ

index structures to manage extents. For example, Ext4 uses

an HTree [19]. Btrfs and XFS use a B
+
-Tree [51, 59]. F2FS

uses a multi-level mapping table [34].

Regular file operations such as overwrite do not modify

existing mappings. An append-write to a file needs to expand

the last extent in place or add new extents to the end of the

mapping index, which is of low cost. However, the insert-
range and collapse-range operations in the aforementioned

data structures can be very expensive due to the shifting

of extents. To be specific, an insert-range or collapse-range
operation needs to update the offset value of every extent

after the insertion or removal point. Therefore, the shift

operation has 𝑂 (𝑁) cost, where 𝑁 is the total number of

extents after the insertion or removal point.

We benchmark the file editing performance of an Ext4 file

system on an Intel Optane 905P SSD. There are two write

patterns, namely, pwrite and insert-range. pwrite starts

with an empty file and uses the pwrite system call to fill

a 1GB space with 4KB blocks in random order without

overwrites. insert-range starts with an empty file and

inserts 4KB data blocks to random 4K-aligned offsets by

shifting existing file data forward until the file size reaches

1GB. Accordingly, each insertion shifts the data after the

insertion point forward. The experimental results are shown

in Figure 1. The throughput of insert-range dropped

quickly and was eventually nearly 1000× lower than that

of pwrite. Although insert-range does not rewrite any

user data, it updates the metadata intensively and caused

25% more writes to the SSD compared to pwrite. This

number can be further increased if the application frequently

calls fsync to enforce write ordering. XFS and F2FS also

support the shift operations, but they exhibit much worse

performance than Ext4, so their results are not included.

2

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

Extents are simple and flexible for managing variable-

length address mappings. However, the alignment require-

ments and the inefficient extent index structures in today’s

file address spaces hinder the adoption of in-place data

insertions and removals. To make a flexible address space

generally usable and affordable for data management appli-

cations, an efficient mechanism that supports data shifting

without rigid alignment requirements is indispensable.

3 FlexTree
Inserting or removing data in a file needs to shift all the

existing data beyond the insertion or removal point, which

causes intensive updates to the metadata of the affected

extents. With regard to the number of extents in a file, the

cost of shift operations can be prohibitively high due to the

𝑂 (𝑁) complexity in existing extent index structures.

The following introduces FlexTree, an augmented B
+
-

Tree that supports efficient shift operations. The design of

FlexTree is based on the observation that a shift operation

alters a contiguous range of extents. FlexTree treats the

shifted extents as a whole and applies the updates to them

collectively. To facilitate this, it employs a new metadata

representation scheme that stores the address information

of an extent on its search path. As an extent index, it costs

𝑂 (log𝑁) time to perform a shift operation in FlexTree, and

a shift operation only needs to update a few tree nodes.

3.1 The Structure of FlexTree
Before demonstrating the design of FlexTree, we first start

with an example of B
+
-Tree [12] that manages an address

space in byte granularity (Figure 2a). Each extent corre-

sponds to a leaf-node entry consisting of three elements—

offset, length, and (physical) address. Each internal node

contains pivot entries that separate the pointers to the child

nodes. When inserting a new extent at the head of an address

space, every existing extent’s offset and every pivot’s offset

must be updated because of the shift operation on the entire

address space.

FlexTree employs an address metadata representation

scheme that allows for shifting extents with substantially

reduced changes. Figure 2b shows a FlexTree that encodes

the same address mappings in the B
+
-tree. In FlexTree, the

offset fields in extent entries and pivot entries are replaced by

partial offset fields. Besides, the only structural difference is

that in a FlexTree, every pointer to a child node is associated

with a shift value. These shift values are used for encoding

address information in cooperation with the partial offsets.

The effective offset of an extent or pivot entry is determined

by the sum of the entry’s partial offset and the shift values

of the pointers found on the search path from the root

node to the entry. The search path from the root node

(at level 0) to an entry at level 𝑁 can be represented by

a sequence

(
(𝑋0, 𝑆0), (𝑋1, 𝑆1), . . . , (𝑋𝑁−1, 𝑆𝑁−1)

)
, where 𝑋𝑖

represents the index of the pointer at level 𝑖 , and 𝑆𝑖 represents

the shift value associated with that pointer. The partial offset

of an entry is 𝑃 . Its effective offset 𝐸 can be calculated by

𝐸 =
(∑𝑁−1

𝑖=0 𝑆𝑖
)
+ 𝑃 .

3.2 FlexTree Operations
FlexTree supports basic extent operations such as appending

extents at the end of an address space and remapping existing

extents, as well as advanced operations, including inserting

or removing extents in the middle of an address space (insert-
range and collapse-range). The following explains how the

address range operations execute in a FlexTree. In this

section, a leaf node entry in FlexTree is denoted by a triple:

(partial_offset, length, address).

The insert-range Operation Inserting a new extent of

length 𝐿 to a leaf node 𝑧 in a FlexTree takes three steps. First,

the operation searches for the leaf node and inserts a new

entry with a partial offset 𝑃 = 𝐸 −
(∑𝑁−1

𝑖=0 𝑆𝑖
)
, assuming

the leaf node is not full. When inserting to the middle

of an existing extent, the extent must be split before the

insertion. The insertion requires a shift operation on all the

extents after the new extent. In the second step, for each

extent within node 𝑧 that needs shifting, its partial offset is

incremented by 𝐿. The remaining extents that need shifting

span all the leaf nodes after node 𝑧. We observe that, if every

extent within a subtree needs to be shifted, the shift value

can be recorded in the pointer that points to the root of the

subtree. Therefore, in the third step, the remaining extents

are shifted as a whole by updating a minimum number of

pointers to a few subtrees that cover the entire range. To this

end, for each ancestor node of 𝑧 at level 𝑖 , the shift values

of the pointers and the partial offsets of the pivots after the

pointer at 𝑋𝑖 are all added by 𝐿. In this process, the updated

pointers cover all the remaining extents, and the path of

each remaining extent contains exactly one updated pointer.

When the update is finished, every shifted extent has its

effective offset added by 𝐿. The number of updated nodes

of a shift operation is bounded by the tree’s height, so the

operation’s cost is 𝑂 (log𝑁).
Figure 3 shows the process of inserting a new extent with

length 3 and physical address 89 to offset 0 in the FlexTree

shown in Figure 2b. The first step is to search for the target

leaf node for insertion. Because all the shift values of the

pointers are 0, the effective offset of every entry is equal to its

partial offset. Therefore, the target leaf node is the leftmost

one, and the new extent should be inserted at the beginning

of that leaf node. Then, there are three changes to be made

to the FlexTree. First, a new entry (0, 3, 89) is inserted at

the beginning of the target leaf node. Second, the other

two extents in the same leaf node are updated from (0, 9, 0)
and (9, 8, 31) to (3, 9, 0) and (12, 8, 31), respectively. Third,
following the target leaf node’s path upward, the pointers to

the three subtrees covering the remaining leaf nodes and the

3

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

64
 7
43

71
11
78

82
 7
71

17
 3
 9

20
10
21

30
 9
12

39
 3
39

42
 9
50

51
 1
42

52
12
59

17 30 64

 0
 9
 0

 9
 8
31

51

Offset
Length

Address

Pivot (offsets)

Pointer

(a) B+-Tree

64
 7
43

71
11
78

82
 7
71

17
 3
 9

20
10
21

30
 9
12

39
 3
39

42
 9
50

51
 1
42

52
12
59

+0

17 +0+0 30 +0 64 +0+0

 0
 9
 0

 9
 8
31

+0 51

Partial Offset
Length

Address

Pivot (partial offsets)

Pointer (w/ shift value)

(b) FlexTree

Figure 2. Examples of B
+
-Tree and FlexTree that manage the same address space

64
 7
43

71
11
78

82
 7
71

17
 3
 9

20
10
21

30
 9
12

39
 3
39

42
 9
50

51
 1
42

52
12
59

 0
 3
89

 3
 9
 0

12
 8
31

3

insert

shift update2

1 54 +3+0

20 +3+0 33 +3 64 +0+0

Figure 3. Inserting a new extent in FlexTree

corresponding pivots are updated, as shown in the shaded

areas in Figure 3. Now, the effective offset of every existing

leaf entry is increased by 3.

FlexTree splits every full node when a search travels down

the tree for insertion. The split threshold is set to one entry

smaller than the node’s capacity because an insertion may

cause an extent to be split, which leads to two entries being

added to the node for the insertion. To split a node, half the

entries in the node are moved to a new node. Meanwhile,

a pointer to the new node and a new pivot entry is created

at the parent node. The new pointer inherits the shift value

of the pointer to the old node so that the effective offsets of

the moved entries remain unchanged. The new pivot entry

inherits the effective offset of the median key in the old full

node. The partial offset of the new pivot is calculated as

the sum of the old median key’s partial offset and the new

pointer’s inherited shift value. Figure 4 shows an example of

a split operation. The new pivot’s partial offset is 38 (which

is 5 + 33).

10 +5...

12 +7+0 33 +6 45 +3

10 +5...

12 +7+0 45 +3

38 +5

+6

Split... ...

Figure 4. An example of node splitting in FlexTree

Querying Mappings of an Address Range To retrieve

the mappings of an address range in FlexTree, the operation

first searches for the starting point of the range, which is

a byte address within an extent. Then, it scans forward

on the leaf level from the starting point to retrieve all the

64
 7
43

71
11
78

82
 7
71

17
 3
 9

20
10
21

30
 9
12

39
 3
39

42
 9
50

51
 1
42

52
12
59

 0
 3
89

 3
 9
 0

12
 8
31

4

2
1 search

walk

walk *
3 search

20 33 54
Effective Offsets

54 +3+0

20 +3+0 33 +3 64 +0+0

23 42 45 55 67 74 850 3 12

Figure 5. Looking up mappings from 36 to 55 in FlexTree

mappings in the requested range. The correctness of the

forward scanning is guaranteed by the assumption that all

extents on the leaf level are contiguous in the logical address

space. Apparently, a hole (an unmapped address range) in

the logical address space can break the continuity and lead

to incorrect range size calculation and wrong search results.

To address this issue, FlexTree explicitly records holes as

unmapped ranges using extents with a special physical

address value that has all the bits set to one. When an

unmapped range is split due to an insertion or write in it,

the resulting unmapped extents, if any, still hold the special

physical address value.

To query the address mappings from 36 to 55 in the

FlexTree shown in Figure 5, a search of logical offset 36

first identifies the third leaf node. The partial offset values of

the pivots in the internal nodes on the path are equal to their

effective offsets (54 and 33), and the target leaf node has the

path

(
(0, +0), (2, +3)

)
. The starting point (logical offset 36) is

the fourth byte within the first extent in the leaf node. Then

the address mappings of the 19-byte range can be retrieved

by scanning the leaf nodes from that point. The result is(
(15, 6), (39, 3), (50, 9), (42, 1)

)
, an array of four tuples, each

containing a physical address and a length.

The collapse-range Operation To collapse (remove with-

out leaving a hole) an address range in FlexTree, the

operation first searches for the starting point of the removal.

If the range starts in the middle of an extent, the extent

is split so that the removal will start from the beginning

of an extent. Similarly, a split is also used when the range

ends in the middle of an extent. The address range being

removed will cover one or multiple extents. For each extent

4

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

in the range, the extents after it are shifted backward using

a process similar to the forward shifting in the insertion

operation. The only difference is that a negative shift value

is used.

Figure 6 shows the process of removing a 9-byte address

range (33 to 42) from the FlexTree in Figure 5 without leaving

a hole in the address space. First, a search identifies the

starting point, which is the beginning of the first extent

(30, 9, 12) in the third leaf node. Then the extent is removed,

and the remaining extents in the leaf node are shifted

backward. Finally, in the root node, the pointer to the subtree

that covers the last two leaf nodes is updated with a negative

shift value of −9, as shown in the shaded area in Figure 6.

45 -6+0

64
 7
43

71
11
78

82
 7
71

51
 1
42

52
12
59

64 +0+0

17
 3
 9

20
10
21

30
 3
39

33
 9
50

 0
 3
89

 3
 9
 0

12
 8
31

remove

shift2

1

update
3

20 +3+0 33 +3

30
 9
12

Figure 6. Removing address mapping from offset 33 to 42

FlexTree merges a node to a sibling if their total size is

under a threshold after a removal. Since two nodes being

merged can have different shift values in their parents’

pointers, we need to adjust the partial offsets in the merged

node to maintain correct effective offsets for all the entries.

When merging two internal nodes, the shift values are also

adjusted accordingly. Figure 7 shows an example of merging

two internal nodes.

10 +5...

12 +7+0 36 +9 48 +6

10 +5...

12 +7+0 45 +3

41 +8

+6

Merge

Figure 7. An example of node merging in FlexTree

3.3 Implementation
FlexTree manages extent address mappings in byte granular-

ity. To be specific, the size of an extent can be an arbitrary

number of bytes. In the implementation of FlexTree, the

internal nodes have 64-bit shift values and pivots. For leaf

nodes, we use 32-bit lengths, 48-bit partial offsets, and 48-bit

physical addresses for extents. The largest physical address

value (2
48 − 1) is reserved for unmapped address ranges.

An effective offset can address a 64-bit space using the

sum of 64-bit shift values and a 48-bit partial offset. When

a leaf node’s maximum partial offset becomes too large, to

avoid overflow, FlexTree subtracts a value𝑀 , which is the

minimum partial offset in the node, from every partial offset

of the node, and adds 𝑀 to the node’s corresponding shift

value in the parent node. Within a leaf node, the extents can

cover up to 256 TB, which is sufficiently large in practice.

In the next section, we will introduce howwe use FlexTree

to manage data in a persistent address space correctly and

efficiently

4 FlexSpace
FlexSpace is a storage engine that provides persistent data

storage in a flexible address space. With FlexSpace, applica-

tions canmake a better tradeoff by leveraging the lightweight

in-place insertion/removal operations to manage sorted data

without using extra indirections or repeated data rewriting.

We implement FlexSpace as a user-space library. It sup-

ports common file operations such as read, write, pread,
and pwrite. It also provides advanced insert_range and

collapse_range APIs for in-place data insertions and re-

movals. The library enables concurrent access to individual

address spaces using reader-writer locks. It does not employ

automated readahead since I/O efficiency is often better

exploited from the application level [32, 33, 36].

Internally, a FlexSpace’s data and metadata are stored

in regular files in a traditional file system. Each FlexSpace

consists of three files—a data file, a FlexTree file, and a

logical log file. The user-space library implementation gives

FlexSpace the flexibility to perform byte-granularity space

management without any block alignment limitations. In the

meantime, the FlexSpace library delegates the job of cache

management to the operating system.

4.1 Space Management
A FlexSpace stores its data in a data file. The data file’s

space is divided into fixed-size segments, which is similar

to the structures in log-structured storage systems [34, 52,

53]. Each segment is 4MB in our implementation because

this size provides a good balance between space allocation

complexity and garbage collection cost (discussed later). Each

new extent is allocated within a segment. Specifically, a large

write operation may create multiple logically contiguous

extents residing in different segments. To avoid small writes,

an in-memory segment buffer is maintained, where consec-

utive extents are automatically merged if they are logically

contiguous. Only one segment is buffered in memory at any

time.

The FlexSpace library performs garbage collection (GC)

to reclaim space from underutilized segments. It maintains

an in-memory array to record the valid data size of each

segment. A GC process scans the array to identify a set

of most underutilized segments and relocates all the valid

extents from these segments to new segments. Then, the

FlexTree extent index is updated accordingly. Since the

extents in a FlexSpace can have arbitrary sizes, the GC

5

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

process may produce less free space than expected because

of the internal fragmentation in each segment. To address

this issue, we adopt an approach used by a log-structured

memory allocator [53] to guarantee that a GC process can

always make forward progress.

By limiting the maximum extent size to
1

𝐾
of the segment

size, relocating extents in one segment whose utilization

ratio is not higher than
𝐾−1
𝐾

can reclaim free space for at

least one new extent. Therefore, if the space utilization ratio

of the data file is capped at
𝐾−1
𝐾

, the GC can always reclaim

space from the most underutilized segment for writing new

extents. In the implementation, we set the maximum extent

size to be
1

32
(128 KB) of the segment size and conservatively

limit the space utilization ratio of the data file to
30

32
(93.75%).

In addition, we reserve at least 64 free segments for relocating

extents in batches. The FlexSpace library also provides

a flexspace_defrag interface for manually relocating a

range of data in the file into new segments. We will evaluate

the efficiency of the GC policy in §6.

4.2 Metadata Management and Consistency
FlexSpace accesses the FlexTree file by having it memory-

mapped into the user space (using mmap). Therefore, tree
nodes can be loaded and written back on demand. FlexS-

pace must ensure atomicity and crash consistency when

it synchronizes updates to the FlexTree file. An insertion

or removal operation often updates multiple tree nodes

along the search path in the FlexTree. If we use a per-node

journaling mechanism to commit updates in the FlexTree

file, every dirtied node in the FlexTree will be written

twice. To address the potential performance issue, we use

a combination of Copy-on-Write (CoW) [50] and logical

logging [50, 67] to minimize the I/O cost.

CoW Before updating a tree node, FlexSpace creates a

copy of the node in a new location in the file, and performs

updates in the new copy. The FlexTree file has a header at

the beginning that contains a version number and a root

node position. A commit to the FlexTree file creates a new

version of the FlexTree in the file. In the commit process,

updated nodes are written to their new locations (via msync)
in the FlexTree file without rewriting existing nodes. Once

all the updated nodes have been written, the file’s header is

updated atomically to make the new version persist. When

the new version has been committed, the file space used by

the updated nodes in the old version can be safely reused. If

a system crash happens during the commit process, the file

header still points to the old version that is intact. Meanwhile,

all updates are abandoned.

Logical Logging Updates to the FlexTree extent index

can be intensive with small insertions and removals. If every

metadata update directly commits to the FlexTree file and

creates a new version of the FlexTree, the I/O cost can be

high because every commit can update multiple tree nodes

in the FlexTree file. The FlexSpace library adopts the logical

logging mechanism [50, 67] to further reduce the metadata

I/O cost. For every update in the FlexTree, the FlexSpace

library performs the CoW updates to the tree in the mapped

memory, but does not create a new header or synchronize

the updated pages to the backing file. Meanwhile, a record

of the index operation is written to a logical log file. Only

when the log has accumulated a sufficient amount of updates,

FlexSpace synchronizes all the (dirty) mapped pages to the

backing FlexTree file, followed by creating a new FlexTree

header to commit a new version.

A log entry for an insertion or removal operation con-

tains the logical offset, length, and physical address of the

operation. A log entry for a GC relocation contains the old

and new physical addresses and the length of the relocated

extent. Each log entry takes 24 bytes of space (including 2

bits for the operation type), which is much smaller than the

FlexTree node size. The version number of the persistent

FlexTree is recorded at the head of the log. Upon a crash-

restart, uncommitted updates to the persistent FlexTree can

be recovered by replaying the log on the persistent FlexTree.

Note that the logical log will be read only when recovering

from a system crash during FlexTree synchronization. On

regular metadata retrievals, FlexSpace only accesses the

memory-mapped FlexTree file.

Write Ordering When writing data to a FlexSpace, the

data are first written to free segments in the data file. Then,

the metadata updates are applied to the memory-mapped

FlexTree file using CoW and recorded in an in-memory buffer

of the logical log. The buffered log entries are committed

to the log file periodically or on-demand for persistence.

Particularly, the buffered log entries are committed after

every execution of the GC process to make sure that the new

positions of the relocated extents are persistently recorded.

Then, the reclaimed space can be safely reused. Upon a

commit to the log file, the data file must be first synchronized

so that the logged operations will refer to correct file data.

When the logical log file size reaches a pre-defined threshold,

or the FlexSpace is being closed, the updated FlexTree nodes

are committed to the FlexTree file, and a new version of the

FlexTree is created. Afterward, the log file can be truncated

and reinitialized using the FlexTree’s new version number.

D101 D102 ...D1 D3 L1+L2+L3

v1

... Tree

v2

logical log file is full
update tree file header

Tree...

Time : Syncing the corresponding file

Write Order D2

Figure 8. An example of write ordering in FlexSpace

Figure 8 demonstrates the write ordering of a FlexSpace

with an example. 𝐷𝑖 and 𝐿𝑖 represent the data write and

6

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

the logical log write for the 𝑖-th file operation, respectively.

At the time of “v1”, there are no uncommitted updates to

the FlexTree file. Meanwhile, the log file is almost empty,

containing only the FlexTree version (version 1). Then, for

each write operation, the data is written to the data file

(or buffered if the data is small), and its corresponding

metadata updates are logged in the logical log buffer. When

the logical log buffer is full, all the file data (𝐷1, 𝐷2, and

𝐷3) are synchronized to the data file. Then the buffered

log entries (𝐿1 + 𝐿2 + 𝐿3) are written to the logical log

file. When the log file is full, the updated FlexTree nodes

are synchronized to the FlexTree file (𝑇𝑟𝑒𝑒). Afterward, a

new FlexTree file header is written atomically to create the

new version (version 2). The logical log is then cleared for

recording future operations based on the new version. I/O

barriers (fsync or msync) are used before and after each

logical log file commit and each FlexTree file header update

to enforce write ordering, as shown in Figure 8.

Crash Consistency Following the write ordering intro-

duced above, FlexSpace can always maintain a consistent

state when a system crash occurs. We justify this by taking

Figure 8 as an example. If the system crashes during a data

file I/O (e.g.,𝐷1,𝐷2 or𝐷3), nometadata has been flushed from

the in-memory log buffer, so these data will be abandoned

and their space will be reclaimed after a crash recovery. If the

system crashes during a logical log write (e.g., 𝐿1 + 𝐿2 + 𝐿3),

the log entries can be partially written. However, since the

logs are flushed in order and all their corresponding data

have been written (𝐷1,𝐷2 and𝐷3), redoing the consecutively

valid log entries can recover FlexSpace to a consistent state. If

the system crashes during committing the updated FlexTree

nodes to the on-disk FlexTree file, this process can always

restart from the beginning because all the logical logs are

written and the old version of the FlexTree is accessible after

restarting. This is also the case when the system crashes

during updating the tree file header.

5 FlexDB
We build FlexDB, a KV store powered by the advanced

features of FlexSpace. Just like the popular LSM-tree KV

stores, LevelDB [23] and RocksDB [21], FlexDB buffers

updates in a MemTable and writes to a write-ahead log

(WAL) for immediate data persistence. When committing

updates to the persistent storage, however, FlexDB adopts a

greatly simplified data model. FlexDB stores all the KV pairs

in sorted order in a FlexSpace, without using any persistent

indirections. Instead of performing repeated compactions

across a multi-level store hierarchy that causes high write

amplification, FlexDB directly commits updates from the

MemTable to the FlexSpace in place at low cost. FlexDB

employs a space-efficient volatile sparse index to track posi-

tions of persistent KV data in the FlexSpace and implements

user-space caching for fast reads.

bar bit far kit pinfooact
0 42 64 89

SET(key="cat", value="abcd")

bar bit far kit pinfooact
0 42 73 98

...

"bit"0 42 "pin"64 89

"foo"+0 +9
Sparse
Index

FlexSpace

Pivot (anchor key) Pointer (w/ shift value)

Anchor Key
Partial Offset

...

"bit"0 42 "pin"64 89

"foo"+0 +0
Sparse
Index

FlexSpace

cat

offset

offset

Figure 9. An example of the sparse KV index in FlexDB

5.1 Managing KV Data in a FlexSpace
FlexDB stores persistent KV pairs in a FlexSpace and keeps

them always sorted (in lexical order by default) with in-place

updates. Each KV pair in the FlexSpace starts with the key

and value lengths encoded with Base-128 Varint [8], followed

by the key and value’s raw data. A sparse KV index, whose

structure is similar to a B
+
-Tree, is maintained in the memory

to enable fast search in the FlexSpace.

KV pairs in the FlexSpace are grouped into intervals, each
covering a number of consecutive KV pairs. The sparse index

stores an entry for each interval using the smallest key in

it as the index key. The entry also records the size of the

interval. As with FlexTree, the sparse index encodes the

offset of an interval using the partial offset and the shift

values on its search path. Specifically, each leaf node entry

contains a partial offset, and each child pointer in internal

nodes records a shift value. The effective offset of an interval

is the sum of its partial offset and the shift values on its

search path. A search of a key performs a binary search on

the sparse index and calculates the effective offset of the

interval. Then, the search scans the interval to find the KV

pair. Figure 9 shows an example of the sparse KV index with

four intervals. The first interval does not need an index key.

The index keys of the other three intervals are “bit”, “foo”

and “pin”, respectively. A search of “kit” reaches the third

interval (“foo” < “kit” < “pin”) at offset 64 (0+64).

When inserting (or removing) a KV pair in an interval,

the offsets of all the intervals after it need to be shifted so

that the index can stay in sync with the FlexSpace. The shift

operation is similar to that in a FlexTree. First, the operation

updates the partial offsets of the intervals in the same leaf

node. Then, the shift values on the path to the target leaf

node are updated. Unlike in FlexTree, the partial offsets in

the sparse KV index are not the search keys but the values

in leaf node entries. Therefore, the shift operation does not

modify any index keys or pivots. An update operation that

resizes a KV pair is performed by removing the old KV pair

and inserting the new one at the same offset.

To insert a newKV pair (“cat”, “abcd”) in the FlexDB shown

in Figure 9, a search first identifies the interval at offset 42

7

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

whose index key is “bit”. Assuming the new KV item’s size is

9 bytes, we insert it to the FlexSpace between keys “bit” and

“far” and shift the intervals after it forward by 9. As shown

at the bottom of Figure 9, the effective offsets of the last two

intervals are incremented by 9.

The sparse index needs to split a large interval or merge

two small intervals when their sizes reach specific thresholds.

The thresholds are specified by the total data size in bytes

and the number of KV pairs. In the implementation, the split

threshold is defined as 16 KB and 16 KV items, whichever is

exceeded first. Two intervals can be merged if the total size

is less than 16KB and they contain less than 16 KV items.

These threshold values are chosen because they show the

most balanced performance on our testbed. They can be

adjusted based on the actual system configuration to gain

better performance when FlexDB is deployed.

5.2 Interval Caching
Real-world workloads often exhibit skewed access pat-

terns [1, 5, 64]. Many popular KV stores employ user-space

caching to exploit the access locality for improved search

efficiency [9, 21, 24]. FlexDB adopts a similar approach by

implementing an interval cache to store frequently used

intervals in the main memory. Every interval’s entry in the

sparse index contains a cache pointer that is initialized as

NULL to represent an uncached interval. Upon a cache miss,

a new cache entry is allocated by creating an array of KV

pairs based on the interval’s data loaded from the FlexSpace.

Interval cache is a read cache that adopts a write-through

policy and uses the CLOCK replacement algorithm [11]. A

data write first persists in the underlying data file, then

updates its corresponding cache entry. On a cache eviction,

the entry to be evicted can be directly removed and freed

without writing back its cached KV pairs.

When an interval is being loaded into the cache, FlexDB

marks it as fragmented if the number of extents is more than

half the number of KV pairs. When a marked interval is

updated, FlexDB uses flexspace_defrag (§4.1) to perform

defragmentation on it. In a cached interval, each KV pair is

associated with a 16-bit hash fingerprint of the key for fast

point queries with a minimal number of key comparisons. In

range queries, a SEEK performs a binary search on the array.

5.3 Supporting Concurrent Access
Updates in FlexDB are buffered in a MemTable. The

MemTable is a thread-safe skip list that supports concurrent

access of one writer and multiple readers. Updates in

the MemTable are periodically (or immediately when the

MemTable is full) committed to the FlexSpace and the sparse

index by a background committer thread. During this process,

the MemTable becomes immutable and a new MemTable is

created to receive updates. The committer can rewrite a

highly fragmented interval for defragmentation if the thread

is not fully loaded. A lookup in FlexDB first searches the

MemTables. If the key is not found, it queries the sparse KV

index to find the key in the FlexSpace.

When the committer thread is active, it requires exclusive

access to the sparse index and the FlexSpace to prevent

inconsistent data or metadata from being reached by readers.

To this end, a reader-writer lock is used. A thread performing

point or range queries must acquire the reader lock to access

the sparse index or the FlexSpace. The committer thread

must hold the writer lock while committing updates to

the sparse index and the FlexSpace to block other threads

that need to read them. Note that the lock does not block

access to the MemTable. Particularly, a thread writing to

the MemTable can only be blocked if the MemTable is

full. For balanced performance and responsiveness, the

committer thread releases and reacquires the lock every time

it has committed 1000 KV pairs. Therefore, readers can be

served quickly without waiting for the completion of the

committing process. We will measure and discuss the wait

time in §6.3.

5.4 Crash Recovery and Index Rebuilding
Upon a restart, FlexDB first recovers the uncommitted KV

data from the write-ahead log. Then, it constructs the volatile

sparse KV index. Intuitively the sparse index can be built by

sequentially scanning the KV pairs in the FlexSpace, but the

cost can be significant in a large store. In fact, the rebuilding

only requires an index key for each interval. Therefore, a

sparse index could be quickly constructed by skipping a

certain amount of data every time an index key is determined.

In FlexDB, the FlexSpace’s extents are created by inserting

or removing KV pairs, which guarantees that every extent

always begins with a KV pair. To identify a KV pair in the

middle of the FlexSpace without knowing its exact offset,

we add a read_extent(off, buf, maxlen) function to the

FlexSpace library. The function searches for the extent at the

designated offset (off) and reads up to maxlen bytes of data

from the beginning of the extent. The extent’s size, logical

offset (≤ off), and the number of bytes read are returned. To

build a sparse index, read_extent is used to retrieve a key at
each approximate interval offset (8 KB, 16 KB, . . .) and these

keys are used as index keys of the new intervals. FlexDB can

immediately start processing requests once the sparse index

is built. A recovered interval whose size exceeds the split

threshold will be split when it is accessed.

6 Evaluation
In this section, we experimentally evaluate FlexTree, the

FlexSpace library, and FlexDB. All the experiments are run

on a server with an Intel 10-core Xeon Silver 4210 CPU and

64GB RAM. The persistent storage device of all tests is an

Intel Optane 905P SSDwith 960GB capacity. Theworkstation

runs a 64-bit Linux OS with kernel version 5.10.32 LTS.

8

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

Table 1. Throughput of the extent metadata operations

Experiment Insert Append Lookup Range

of Extents 10
5

10
6

10
8

10
9

10
8

10
9

10
8

10
9

M
o
p
s
/
s
e
c

FlexTree 3.46 2.45 13.62 11.93 1.06 0.71 0.63 0.49

B
+
-Tree 0.032 0.0018 14.07 12.13 1.11 0.70 0.63 0.49

Sorted Array 0.029 0.0019 20.63 19.48 1.13 0.76 0.80 0.61

6.1 FlexTree as an Address Space Index
First of all, we evaluate the performance of the FlexTree

index structure and compare it with a regular B
+
-Tree and

a sorted array. In the evaluation of FlexTree, we want to

answer the following questions: (1) What is the practical

performance advantage of the asymptotic 𝑂 (log𝑁) shift
operations in FlexTree compared to data structures that have

𝑂 (𝑁) cost? (2) Can FlexTree efficiently handle range queries,

which are frequently used for retrieving the address mapping

information of a range of data? (3) How much overhead does

FlexTree introduce to common address space operations such

as lookup and append, compared to a regular B
+
-Tree?

The B
+
-Tree has the structure shown in Figure 2a, which is

identical to FlexTree except that the shift values are removed

from the internal nodes. In a shift operation, the B
+
-Tree and

the array must update all the shifted extents.

We benchmark four index operations—insert, append,
lookup and range-query. An insert experiment starts with an

empty index. Each operation inserts a new extent at a random

offset within the existing space. An append experiment starts

with an empty index. Each operation appends a new extent

after the existing extents. A lookup experiment randomly

queries extents, and every operationmust search the index. A

range-query experiment randomly queries ranges consisting

of 50 extents, where each operation searches for the first

extent, then walks on the leaf nodes or the array to read the

next 50 extents. These extent index structures are memory-

resident and there are no persistent data.

Table 1 shows the throughput of each data structure in the

experiments. Since FlexTree’s address metadata representa-

tion scheme allows formuch faster extent insertions, it shows

high throughput in the insert experiments. However, the B
+
-

Tree and the sorted array show extremely high overheads

due to the intensive memory writes and movements. To be

specific, every time an extent is inserted at the beginning, the

entire mapping index is rewritten. FlexTree maintains a con-

sistent 𝑂 (log𝑁) cost for insertions, which is asymptotically

and practically faster.

For appends, the sorted array outperforms FlexTree and

the B
+
-Tree because appending new extents at the end of

an array does not need node splits or memory allocations.

Meanwhile, FlexTree is only 3% slower than the B
+
-Tree. In

the lookup and range-query experiments, the sorted array

also outperforms the others because a binary search in a large

sorted array with fixed-sized extents can be done efficiently

without moving between a multi-level tree structure. In the

three experiments, the throughput of FlexTree and B
+
-Tree

are close, which suggests that the calculation of effective

offsets in FlexTree is of low cost. FlexTree also inherits the

good range query efficiency from B
+
-Tree.

6.2 The FlexSpace Library
In this section, we evaluate the efficiency of data I/O

operations in the FlexSpace library. Note that FlexSpace is

a storage engine that provides a persistent flexible address

space for data management applications. Although there are

overlaps between FlexSpace and file system functionalities,

FlexSpace does not replace file systems on managing tradi-

tional files and directories. Therefore, file system benchmarks

that require hierarchy directory structures do not apply

to FlexSpace. In this section, we focus on data I/O and

shifting operations within a persistent address space. Since

FlexSpace adopts FlexTree as its extent index structure, we

expect it to be highly efficient in shifting operations. In the

meantime, FlexSpace is not specifically optimized for regular

file I/O operations. Therefore, we do not expect FlexSpace

to outperform traditional file systems on these operations.

We compare FlexSpace with file address spaces provided

by four representative file systems, Ext4 [20], XFS [58],

F2FS [34], and Btrfs [51]. Among them, Ext4, XFS, and F2FS

support block-aligned shift operations. The four file systems

are formatted using mkfs with their default arguments.

FlexSpace stores its internal files on an XFS file system.

In the evaluation of FlexSpace, we want to answer the

following questions: (1) What is the performance benefit of

FlexSpace’s insert-range and collpase-range operations? (2)
How do different access patterns affect the performance of

FlexSpace? (3) What are the performance implications of

implementing a storage engine in the user space?

Each experiment consists of a write phase and a read phase

with one thread. There are three write patterns for the write

phase—random insert (using insert-range), random write,

and sequential write. The first two patterns are the same

as the insert and pwrite in Section 2, respectively. The

sequential write pattern writes data blocks sequentially. A

write phase starts with an empty address space and writes or

inserts data blocks using the respective pattern. Finally, an

I/O barrier (fsync in file systems) is issued to enforce I/Os.

Note that an I/O barrier in FlexSpace consists of flushing

all buffered segment writes and synchronizing its internal

files appropriately. After the write phase, we measure the

read performance with two patterns—sequential and random.

Each read operation reads a block of data from the address

space. The random pattern uses randomly shuffled offsets

so that it reads each data block in the address space exactly

once. For each read pattern, the kernel page cache is first

cleared. Then the program reads the entire address space

twice, once with a cold cache and once with the cache

9

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

Table 2. Single-threaded I/O performance of FlexSpace and regular files in XFS, Ext4, F2FS, and BtrFS

I/O Size 4 KB (File Size = 1GB) 64 KB (File Size = 16GB)

Write Pattern Rand. Insert Rand. Write Seq. Write Rand. Insert Rand. Write Seq. Write

System Flex XFS Ext Flex XFS Ext F2 Btr Flex XFS Ext F2 Btr Flex XFS Ext Flex XFS Ext F2 Btr Flex XFS Ext F2 Btr

Write (GB/s) 0.62 𝜀 𝜀 0.61 0.57 0.50 0.61 0.62 0.62 0.63 0.60 0.55 0.62 0.75 𝜀 0.05 0.76 0.79 0.77 0.85 0.64 0.77 0.82 0.77 0.72 0.82

W. A. Ratio 1.03 5.53 2.23 1.03 1.02 1.06 1.02 1.10 1.03 1.02 1.05 1.02 1.03 1.02 1.83 1.10 1.02 1.02 1.05 1.03 1.03 1.02 1.02 1.05 1.03 1.03

R
e
a
d
(
G
B
/
s
)

Seq. Cold 0.39 1.11 0.95 0.41 1.97 1.82 1.81 1.15 1.92 1.97 1.83 1.81 1.66 0.95 1.93 2.07 0.95 1.92 2.05 2.02 1.63 1.93 2.05 2.05 2.02 1.71

Rand. Cold 0.38 0.38 0.36 0.38 0.41 0.37 0.40 0.24 0.40 0.41 0.36 0.40 0.25 0.94 0.97 0.99 0.94 0.95 1.00 0.98 0.79 0.95 1.01 0.98 1.00 0.81

Seq. Warm 3.44 4.26 4.48 3.44 4.39 4.44 4.43 4.44 4.33 4.42 4.44 4.42 4.38 5.45 5.76 5.70 5.43 5.70 5.71 5.73 5.74 5.58 5.71 5.74 5.76 5.74

Rand. Warm 2.42 3.23 2.75 2.40 3.28 3.39 3.41 3.38 2.77 3.28 3.36 3.42 3.38 5.21 5.46 4.43 5.17 5.43 5.44 5.40 5.49 5.19 5.42 5.47 5.42 5.46

warmed up. In the experiments, we adopt two I/O sizes—

4KB and 64 KB. With each I/O size, we use the same number

of blocks (2
18
) to construct the address space. Therefore,

the address space sizes are 1GB and 16GB, respectively.

Table 2 shows the experimental results (𝜀 represents a value

<0.01). We also include the write amplification (WA) ratios

of each experiment, derived from the SMART data of the

SSD. The following discusses the key observations from the

experiment results.

Insert FlexSpace’s random insert throughput can be up

to 180× higher than Ext4 (620MB/s vs. 3.36MB/s) and four

orders of magnitude higher than XFS. F2FS exhibits lower

throughput than XFS so its results are omitted. Through-

out the insertion process, FlexSpace can maintain high

throughput while Ext4 and XFS suffer extreme throughput

degradations because of the growing extent index sizes that

lead to increasingly intensive metadata updates.

Write The random and sequential write throughput of

FlexSpace is on par with the other systems. FlexSpace

commits writes to the data file (stored in XFS) in the unit

of segments, which enables batching and buffering in the

user space. Meanwhile, FlexSpace adopts the log-structured

write in the data file, which transforms random writes on

the FlexSpace into sequential writes on the SSD. As a result,

random writes in FlexSpace can outperform XFS with the

4 KB I/O size.

Write Amplification In the random and sequential write

experiments, all the systems show low WA ratios because

the metadata updates are not intensive. However, in the

random insert experiments, Ext4 and XFS show very high

WA ratios (up to 5.53) because each insert operation updates

half of the existing extents’ metadata on average, which

leads to intensive computation and metadata I/O. XFS and

Ext4’sWA ratios are lower with the I/O size increased (64 KB)

since the amount of metadata updates remains the same.

That said, they still show low throughput because of the

high computation cost. In FlexSpace, the insert operations

have a very low cost (𝑂 (log𝑁) time) and the logical logging

can further reduce metadata write. As a result, FlexSpace

achieves fast inserts (≥ 620MB/s) with constantly low WA

ratios (≤ 1.03).

1 2 4 8
of Threads

0

1

2

Th
ro

ug
hp

ut
 (G

B/
s) Seq. Cold

1 2 4 8
of Threads

Rand. Cold

1 2 4 8
of Threads

0

5

10

Seq. Warm
XFS

1 2 4 8
of Threads

Rand. Warm
FlexSpace

Figure 10. Read throughput after random write (4 KB)

Read All the systems show similar read speed on address

spaces constructed with sequential writes. However, with

random writes/inserts, FlexSpace generates a fragmented

data file layout which causes random read in the data file.

As a result, when reading sequentially with a cold cache,

FlexSpace shows 2.8× to 4.8× lower throughput than the file

systems. That said, all the systems show slow random read

with a cold cache since there is hardly any readahead in the

kernel.

Data management systems often rely on asynchronous

I/O or multi-threading to exploit I/O bandwidth [32, 33, 36].

To evaluate the I/O efficiency in this context, we run the read

experiments with different numbers of threads. As shown

on the left of Figure 10, XFS’s throughput is already near its

peak with one thread because of the automated readahead in

the kernel. FlexSpace’s throughput continues to increase

with more threads and eventually reaches 98% of XFS’s

throughput.

As shown in Figure 10, FlexSpace’s throughput is close to

XFS when the cache is warmed up. The difference is larger

with fewer threads because of the constant costs of accessing

the FlexTree. Like the previous experiment, multi-threading

can hide these costs and also increase access throughput.

With eight threads, FlexSpace’s throughput increased by up

to 4× and is at least 96% of XFS’s throughput.

6.3 FlexDB Performance
The goal of FlexDB is to demonstrate that a simple persistent

KV store built based on a persistent flexible address space

(FlexSpace) can match or outperform the state-of-the-arts

that are built based on traditional files. We expect FlexDB to

show significantly lower write amplification ratios because

10

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

S Z C
0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
(M

op
s/

se
c) ZippyDB

S Z C
Key Distribution

UDB

S Z C

SYS
RocksDB KVell FlexDB

(a) Insertion throughput

S Z C
0

100

200

300

400

500

D
at

a
W

ri
tte

n
(G

B) 1796 2217

ZippyDB

S Z C
Key Distribution

1076 1301

UDB

S Z C

SYS
RocksDB KVell FlexDB

(b) SSD writes

S Z C
0

1

2

3

4

Th
ro

ug
hp

ut
 (M

op
s/

se
c) ZippyDB

S Z C
Key Distribution

UDB

S Z C

SYS
RocksDB KVell FlexDB

(c) Point query throughput

10 20 50 100
0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 (M

op
s/

se
c) ZippyDB

10 20 50 100
Scan Length

UDB

10 20 50 100

SYS
RocksDB KVell FlexDB

(d) Scan throughput (Zipfian)

1 2 3 4 5 6 7 8
of Threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

op
s/

se
c) SET

1 2 3 4 5 6 7 8
of Threads

0.0

0.5

1.0

1.5

2.0

2.5
GET

1 2 3 4 5 6 7 8
of Threads

0.0

0.1

0.2

0.3

0.4

0.5
SCAN50

RocksDB KVell FlexDB

(e) Scalability (UDB+Zipfian)

Z C
Key Distrib.

0.0

0.2

0.4

0.6

0.8

M
op

s/
se

c

Throughput

Z C
Key Distrib.

0

100

200

300

To
ta

l I
/O

 (G
B)

SSD Write
Low GC High GC

(f) GC overhead

Figure 11. Microbenchmark results of FlexDB. Key distributions: S – Sequential; Z – Zipfian; C – Zipfian-Composite.

FlexSpace enables lightweight in-place update functionali-

ties. Meanwhile, a fully sorted data layout in FlexDB shall

greatly reduce its query cost.

We evaluate the performance of FlexDB through various

experiments and compare it with Facebook’s RocksDB [21],

a representative LSM-Tree KV store, and KVell [36], an

NVMe-optimized B
+
-Tree-based KV store that exploits I/O

bandwidth with asynchronous I/O and uses a full index

in memory for fast search. We also evaluated LMDB (B
+
-

Tree based) [57] and TokuDB (B
𝜀
-Tree based) [45]. However,

they exhibit consistently low performance compared with

RocksDB. Similar observations are also reported in recent

studies [17, 24, 44]. Therefore, their results are omitted.

For a fair comparison, both FlexDB and RocksDB are

configured with 1GB MemTables and 16GB user-space

cache. RocksDB is tuned as suggested by its official tuning

guide [49]
1
. FlexDB has its automatic defragmentation and

the FlexSpace GC always enabled. KVell maintains its own

page cache in the user space and uses direct I/O to bypass

the kernel’s cache. We adjust its cache size (≥16GB) based
on the actual memory footprint in each experiment to make

sure it can fully utilize the available memory on the machine.

Compression is disabled in all the stores.

All the experiments in this section run with 4 concurrent

client threads unless otherwise noted. FlexDB uses only

one background thread (the committer thread described in

§5.3). RocksDB has up to 4 background compaction threads.

KVell is configured with 4 worker threads, each with an

I/O depth of 64. Therefore, the numbers of CPU cores that

can be utilized by FlexDB, RocksDB, and KVell are 5, 8, and

8, respectively. For read and YCSB experiments, each data

1
Following the configurations for “Total ordered database, flash storage”.

Table 3. Synthetic KV datasets with real-world KV sizes

Dataset ZippyDB [5] UDB [5] SYS [1]

Avg. Key+Value Sizes (B) 48+43 27+127 28+396

Number of KV pairs 720M 420M 150M

FlexDB Index Size 3.51GB 1.50GB 534MB

point is measured by running the respective workload for

60 seconds.

We generate synthetic KV datasets using the represen-

tative KV sizes of Facebook’s production workloads [1, 5].

Table 3 shows the details of the datasets, as well as the size of

FlexDB’s sparse index when storing each dataset. Note that

the sparse index memory footprint can be tuned by adjusting

the interval splitting threshold. The size of each dataset is

about 64GB, approximately 4× the size of the user-level

cache in FlexDB and RocksDB. The workloads are generated

using three key distributions—sequential, Zipfian (𝛼 = 0.99),

and Zipfian-Composite [24]. With Zipfian-Composite, the

prefix (the first three decimal digits) of a key follows the

default Zipfian distribution, and the remaining bits are drawn

uniformly at random.

Write (PUT) Each write experiment starts from an empty

store. Each client thread inserts 25% (approximately 16GB)

of the dataset to the store following the key distribution.

For sequential load, the dataset is partitioned into four

contiguous ranges, and each thread inserts one range of KV

pairs. For the Zipfian and Zipfian-Composite distributions,

existing keys can be overwritten, which leads to reduced

write I/O if MemTables are used.

Figures 11a and 11b show the measured throughput and

amount of disk I/O of the systems. KVell outperforms FlexDB

11

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

and RocksDB by more than 2× with sequential load, which

is because KVell fully utilizes the I/O bandwidth without

writing to a WAL. In comparison, FlexDB has only one

committer thread and needs to record KV pairs in the WAL.

Meanwhile, RocksDB must pay extra costs for compactions.

However, when facing workloads that regularly update

existing keys (with Zipfian and Zipfian-Composite distribu-

tions), KVell shows significantly degraded throughput and up

to 8.5×more data written to the SSD compared with FlexDB.

The reason is that KVell uses slab allocators to manage

space in the SSD and must perform block-sized in-place

updates, which leads to highWAwhen the average KV size is

smaller than the block size. FlexDB shows higher throughput

than RocksDB by 2.2–3.3× across the experiments, The

advantage mainly comes from FlexDB’s capability of directly

committing updates to the FlexSpace at low cost. In contrast,

RocksDB requires repeated compactions to sort-merge KV

pairs across the multi-level structure, which leads to high

WA and computation cost. As shown in Figure 11b, RocksDB

writes 2.1–2.9× more data to the SSD than FlexDB.

Read (GET and SCAN) We measure the point and range

query throughput of the three systems. For each dataset,

we populate the store with 4 threads, followed by 4GB of

random updates using the Zipfian distribution to emulate a

randomized data layout in real-world KV stores.

As shown in Figure 11c, RocksDB shows low GET through-
put because each operation requires a number of key

comparisons to identify candidate tables at each level. For

each candidate table, it needs to examine the bloom filter

and then search the index if the filter returns true. KVell and

FlexDB achieve higher throughput by maintaining a single-

level in-memory index for fast lookups. The advantage of

FlexDB is particularly high because it uses a much smaller

sparse index and can quickly search in an interval with few

key comparisons (see §5.2). Additionally, KVell stores the

block address of each KV pair in the full index. A lookup

in KVell needs to retrieve the cached block with an extra

lookup in the page cache, which adds a constant overhead.

As shown in Figure 11d, the advantage of FlexDB remains

significant in range queries because of its low cost on

accessing KV data in the interval cache. In comparison, range

queries in RocksDB require expensive sort-merging of KV

data from multiple overlapping tables. To avoid synchroniza-

tion overhead, KVell partitions the store with hash-based

sharding, where each shard is exclusively managed by a

worker thread. A range query in KVell must access every

shard and sort-merge all the KV pairs at the client side

to generate the search results. As a result, the scans are

bottlenecked by excessive data copying and sort-merging.

Multi-core Scalability To measure the multi-core scala-

bility of FlexDB, we rerun the write and read experiments

with 1 to 8 client threads using the UDB dataset and the

Zipfian access pattern. The scan experiments use a scan

Table 4. Latency and Throughput with UDB+Zipfian

Op. PUT GET

Sys. Rocks KVell KVell1 Flex Rocks KVell KVell1 Flex

Avg. (𝜇s) 13.8 1669 153 3.9 9.0 453 72.6 3.7

95 p (𝜇s) 17 2904 271 9 21 953 143 9

99 p (𝜇s) 19 3386 306 17 43 1360 173 33

Mops/sec 0.30 0.53 0.09 0.95 0.52 1.13 0.15 1.65

length of 50 keys. The results are shown in Figure 11e.

FlexDB and RocksDB both scale well in the read (and also

write for RocksDB) experiments because the workloads are

mainly CPU-bound. However, FlexDB’s write throughput

stops increasing with more than 5 threads. In this scenario,

the committer thread in FlexDB has been fully loaded and

becomes the bottleneck. KVell shows constant throughput

because it has a fixed number of worker threads, each exclu-

sively processing requests for a shard. We reconfigure KVell

with different numbers of shards, and the GET performance

reaches its peak at 1.96Mops/sec with 8 worker threads

and 2 client threads (on the 10-core machine). The PUT and
SCAN throughput do not improve since the I/O bandwidth is

already saturated with four workers.

Latency We discuss the latency metrics with the UDB

dataset under Zipfian workloads (shown in Table 4). Com-

pared with RocksDB, FlexDB is able to quickly commit KV

updates to the FlexSpace instead of merging data in a multi-

level structure. In the meantime, a lookup in FlexDB does

not need to access multiple tables and sort data on the

fly. Therefore, FlexDB shows the lowest latency metrics in

both PUT and SET operations. KVell relies on asynchronous

I/O to gain high throughput with a deep request queue

(up to 64 queued requests). The queuing causes much

longer response times than in FlexDB and RocksDB. That

said, a smaller queue depth can improve responsiveness

and reduce the latency readings of KVell. Accordingly, we

measure KVell’s latency metrics with its queue depth set to

1 and show the results in the columns named “KVell1” in

Table 4. KVell’s latency metrics improve by about an order of

magnitude by reducing the queue depth from 64 to 1, but the

absolute numbers are still worse than FlexDB and RocksDB.

Furthermore, the improvement comes at a cost of mediocre

throughput because of the lack of I/O parallelism, as shown

in the last row in Table 4.

GC Overhead We evaluate the impact of the FlexSpace

GC activities on FlexDB using an update-intensive exper-

iment. Each run of the experiment performs in total 800

million KV updates to a store containing the UDB dataset.

The total update size is approximately twice the store size,

which generates a fully aged storage layout during the

experiment. We first run the experiment with the FlexSpace’s

data file size capped at 128GB, which represents the scenario

of amodest space utilization ratio (50%) and lowGCoverhead.

12

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

For comparison, we run the same experiments with the data

file size capped at 75 GB. The smaller size leads to high GC ac-

tivities in the FlexSpace with a higher space utilization ratio

(85%). The results are shown in Figure 11f. The intensive GC

shows a negligible impact on both throughput and I/O with

Zipfian workloads. In this scenario, the GC process can easily

find near-empty segments because the frequently updated

keys are often co-located in the data file. Comparatively, the

Zipfian-Composite distribution has a much weaker spatial

locality, which leads to more rewrites in the GC process.

YCSB Benchmark YCSB [10] is a popular benchmark that

evaluates KV store performance using realistic workload pat-

terns. We use the UDB store populated by the corresponding

four-thread load experiment, and run the YCSB workloads

from A to F. The details of the YCSB workloads are shown in

Table 5. A scan in workload E performs a seek and retrieves

50 KV pairs. Figure 12a shows the benchmark results.

Table 5. YCSB workloads

Workload A B C D E F

Distribution Zipfian Latest Zipfian

Operations

50% U 5% U

100% R

5% I 5% I 50% R

50% R 95% R 95% R 95% S 50% M

∗
I: Insert; U: Update; R: Read; S: Scan; M: Read-Modify-Write.

In read-dominated workloads including B, C, and E,

FlexDB outperforms RocksDB and KVell by 2.0–5.9× and 1.2–

3.6×, respectively. This is especially the case in workload E

because of FlexDB’s advantage in range queries. Workload D

performs sequential write while reading very recent updates

with an ideal access locality. KVell achieves the highest

throughput because it can evenly distribute requests across

the hash-based shards without lock contention.

In write-dominated workloads, including A and F, FlexDB

outperforms RocksDB and KVell by 2.1–2.3× and 1.6×,
respectively. The performance advantage is not as high

as that in the read-dominated workloads. In the FlexDB

implementation, when the committer thread is merging

A B C D E F
Workload

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (%

) 787K 1.12M 1.78M 3.86M 266K 815K
 RocksDB KVell

(a) 64GB store

A B C D E F
Workload

520K 677K 857K 2.73M 169K 552K
 FlexDB

(b) 500GB store

Figure 12. YCSB benchmark with the UDB KV data size.

Results of each workload are normalized to the highest. The

throughput (ops/sec) of the highest bar in each experiment

is shown on the top.

updates into the FlexSpace, readers that reach the sparse

index can be temporarily blocked (see §5.3). In workload A,

the P99 latency is 30 𝜇s with amaximum reader blocking time

of 3.4ms. The blocking time can be improved by partitioning

the store [24], which is beyond the scope of this paper.

We also run the YCSB benchmark in an out-of-core

scenario by increasing the UDB dataset size to about 500GB.

In this setup, KVell’s full index does not fit in the available

memory. When running with swap space enabled, KVell

shows severe performance degradation by more than an

order of magnitude compared to the in-core experiments,

except for workload D that has optimal locality. Similar

slowdowns are also observed in KVell’s evaluation on the

impact of different memory sizes [36]. Therefore, we do not

turn on swap and exclude KVell from this experiment.

Figure 12b shows the out-of-core benchmark results. In

this scenario, both FlexDB and RocksDB show reduced

throughput in all the YCSB workloads due to the increased

I/O cost. The advantage of FlexDB over RocksDB is reduced

in the most I/O-intensive workloads (C and E). This is

because the increased I/O time overshadowed FlexDB’s

search efficiency on the sparse index. That said, FlexDB still

achieves 1.1–3.9× speedups over RocksDB.

Memory Size We analyze the impact of having a reduced

memory size on the stores by running YCSB F benchmark

with different memory configurations. In this experiment,

we set the size ratio of total memory to user-space cache

to 4:1, which is consistent with the default setup of all

the previous experiments. Then, we adjust the available

memory sizes from 64GB to as low as 4GB and measure the

throughput of the systems. Since KVell’s full index cannot

be accommodated with the smaller memory sizes, we only

compare FlexDB with RocksDB in this experiment.

Table 6. YCSB F throughput with different memory budgets

Size (GB) Throughput (Mops/sec) FlexDB

SpeedupMemory Cache RocksDB FlexDB

64 16 0.350 (100%) 0.815 (100%) 2.3×
32 8 0.331 (94.6%) 0.709 (87.0%) 2.1×
16 4 0.315 (90.0%) 0.562 (69.0%) 1.8×
8 2 0.282 (80.6%) 0.443 (54.4%) 1.6×
4 1 0.133 (38.0%) 0.421 (51.7%) 3.2×

The experiment results are shown in Table 6. FlexDB

outperforms RocksDB with different memory configurations.

As the memory size decreases, the speed-up of FlexDB over

RocksDB gets smaller. The reason is that FlexDB has an in-

memory sparse index, which makes the size of the available

OS page cache for FlexDB lower than that in RocksDB.

RocksDB loads its block indexes on demand, which makes

it more memory-efficient. That said, it still suffers from

extra costs on searching its multi-level store. Additionally,

when the memory size further reduces to 4GB, RocksDB

13

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

shows severe performance degradation because the available

memory has become too small to make the block indexes

sufficiently cached.

Recovery We evaluate FlexDB’s recovery speed (described

in §5.4) with a clean page cache and four concurrent recovery

threads. For a store containing the 64GB UDB dataset, the

recovery process takes 7.8 seconds using a small rebuilding

interval size of 16 KB. Increasing the recovery interval size

to 64KB reduces the recovery time to only 1.9 seconds. In

practice, users can make trade-offs between reduced service

downtime and better first-time access latency by adjusting

the recovery interval size. Besides, the first-time access

latency can be further reduced by promptly warming up the

intervals in the background using spare bandwidth. RocksDB

also achieves fast recovery by only scanning the WAL and

lazily loading table files on demand. In comparison, KVell

uses 64 seconds to rebuild a full index in the memory with

four worker threads, and a complete scan of all the keys is

inevitable in this process because of the unordered persistent

storage layout of KVell.

7 Related Work
Data-management Systems Studies on improving I/O

efficiency in data-management systems are abundant [14,

68]. B-tree-based KV stores [41, 43, 57] support efficient

searching with minimum read I/O but have suboptimal

performance under random writes because of the in-place

updates [37]. LSM-Tree [42] uses out-of-place writes and

delayed sorting to improve write performance, and it has

been widely adopted in write-optimized KV stores [21, 23].

However, the improved write efficiency comes at a cost of

slow read operations since a search may query multiple

tables at different locations [39]. To compensate reads, LSM-

tree based KV stores need to rewrite table files periodically

using a compaction process, which in turn offsets the benefit

of out-of-place write [4, 15, 16, 25, 27, 46, 48, 61, 69]. KVell

and HiKV index all the keys in a volatile ordered index for

fast access and leaves KV data unsorted on the persistent

storage [6, 36, 62]. However, maintaining a volatile full

index leads to high memory footprints and lengthy recovery

processes. SplinterDB employs B
𝜀
-tree for fast write by

logging unsorted KV pairs in tree nodes [9]. However, the

unordered node layout leads to slow reads, especially for

range queries. Hashing-based KV stores gain point query

efficiency but have to give up support to range queries [33,

61]. Recent studies also employ byte-addressable NVM for

fast access and persistence [3, 7, 31, 32, 65]. These solu-

tions require non-trivial implementations, including space

allocation, GC, and maintaining crash consistency, which

overlaps the core duties of file systems. FlexDB delegates the

challenging data organizing tasks to the mechanisms behind

the persistent address space, which effectively reduces

application complexity. Managing persistently sorted KV

data with efficient in-place updates achieves fast read and

write at low cost.

Address Space Management Modern in-kernel file sys-

tems, such as Ext4, XFS, Btrfs, and F2FS, use B
+
-Tree

and its variants or multi-level mapping tables to index

file extents [19, 34, 51, 58]. These file systems provide

comprehensive support for general file management tasks

but exhibit suboptimal performance in metadata-intensive

workloads, such as massive file creation, crowded small

writes, as well as insert-range and collapse-range that require
data shifting. Recent studies employ write-optimized data

structures in file systems to improve metadata management

performance. Specifically, BetrFS [30, 66, 67], TokuFS [18],

WAFL [40], TableFS [47], and KVFS [56] use write-optimized

indexes, including B
𝜀
-Tree [2] and LSM-Tree [42], to manage

file system metadata. Their designs exploit the advantages

of these indexes and successfully improved many existing

file system metadata and file I/O operations. However, these

systems still employ the traditional file abstraction and do

not support easily moving data in the file address space.

Therefore, managing sorted data in these systems still relies

on rewriting existing data or employing indirections.

In-memory systems such as rewired memory [35, 54]

utilize virtual memory mappings (i.e., page tables) to dy-

namically relocate page-aligned in-memory data blocks to

sort data without copying. These mechanisms suffer from

the same data shifting problems as in file extent indexes.

Counted B-Tree [13] proposes storing the size of each subtree

in internal nodes, which can be adapted for encoding address

mappings with reduced shifting cost than B-Tree. However,

querying address mappings on a Counted B-Tree requires

linear scanning in each node on the search path, which is

much more expensive than on a FlexTree. The design of

FlexSpace removes a fundamental limitation in persistent

address spaces. By leveraging the efficient shift operations for

logically reorganizing data, applications built on FlexSpace

can easily avoid data rewriting in the first place.

8 Conclusion
This paper presents a novel storage abstraction that provides

a flexible address space, which enables lightweight in-place

updates. It allows applications to perform efficient data

management on a linear data layout with a simplified

implementation. FlexDB, a KV store built on FlexSpace with a

simple structure, achieves speedups of up to 16× for read and

3.3× for write, compared with highly optimized KV stores.

Acknowledgments
We are grateful to our shepherd Dr. Liuba Shrira and the

anonymous reviewers for their invaluable feedback. Xingbo

Wu conducted this work when he was at the University of

Illinois at Chicago. This work was supported in part by the

UIC startup funding.

14

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song

Jiang, and Mike Paleczny. “Workload Analysis of a

Large-Scale Key-Value Store”. In: SIGMETRICS Per-
form. Eval. Rev. 40.1 (2012), pp. 53–64.

[2] Michael A Bender, Martin Farach-Colton, William

Jannen, Rob Johnson, Bradley C Kuszmaul, Donald E

Porter, Jun Yuan, and Yang Zhan. “And introduction to

Be-trees and write-optimization”. In: Login; Magazine
40.5 (2015).

[3] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.

“Viper: An Efficient Hybrid PMem-DRAM Key-Value

Store”. In: Proceedings of the VLDB Endowment 14.9
(2021), pp. 1544–1556.

[4] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel,

Idit Keidar, and Gali Sheffi. “Accordion: BetterMemory

Organization for LSM Key-Value Stores”. In: Proc.
VLDB Endow. 11.12 (2018), pp. 1863–1875.

[5] Zhichao Cao, Siying Dong, Sagar Vemuri, and David

H. C. Du. “Characterizing, Modeling, and Benchmark-

ing RocksDB Key-Value Workloads at Facebook”. In:

18th USENIX Conference on File and Storage Technolo-
gies (FAST’20). 2020, pp. 209–223.

[6] Badrish Chandramouli, Guna Prasaad, Donald Koss-

mann, Justin Levandoski, James Hunter, and Mike

Barnett. “FASTER: A Concurrent Key-Value Store

with In-Place Updates”. In: Proceedings of the 2018
International Conference on Management of Data. 2018,
pp. 275–290.

[7] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and

Yinlong Xu. “SpanDB: A Fast, Cost-Effective LSM-tree

Based KV Store on Hybrid Storage”. In: 19th USENIX
Conference on File and Storage Technologies (FAST 21).
2021, pp. 17–32.

[8] DWARF Debugging Information Format Committee.

DWARF debugging information format version 5. 2017.
[9] Alexander Conway, Abhishek Gupta, Vijay Chi-

dambaram, Martin Farach-Colton, Richard Spillane,

Amy Tai, and Rob Johnson. “SplinterDB: Closing the

Bandwidth Gap for NVMe Key-Value Stores”. In: 2020
USENIX Annual Technical Conference (USENIX ATC’20).
2020, pp. 49–63.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. “Benchmarking

Cloud Serving Systems with YCSB”. In: Proceedings
of the 1st ACM Symposium on Cloud Computing
(SoCC’10). 2010, pp. 143–154.

[11] Fernando J Corbato. A paging experiment with the
multics system. Tech. rep. MASSACHUSETTS INST

OF TECH CAMBRIDGE PROJECT MAC, 1968.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. 3rd. The MIT Press, 2009.

[13] Counted B-Trees. https://www.chiark.greenend.org.uk/
~sgtatham/algorithms/cbtree.html.

[14] Ali Davoudian, Liu Chen, and Mengchi Liu. “A Survey

on NoSQL Stores”. In: ACM Comput. Surv. 51.2 (2018).
[15] Niv Dayan and Stratos Idreos. “Dostoevsky: Better

Space-Time Trade-Offs for LSM-Tree Based Key-Value

Stores via Adaptive Removal of Superfluous Merging”.

In: Proceedings of the 2018 International Conference on
Management of Data (SIGMOD’18). 2018, pp. 505–520.

[16] Niv Dayan and Stratos Idreos. “The Log-Structured

Merge-Bush & theWacky Continuum”. In: Proceedings
of the 2019 International Conference on Management of
Data (SIGMOD’19). 2019, pp. 449–466.

[17] Siying Dong, Mark Callaghan, Leonidas Galanis,

Dhruba Borthakur, and Tony Savor. “Optimizing

Space Amplification in RocksDB.” In: The Conference
on Innovative Data Systems Research (CIDR’17). Vol. 3.
2017, p. 3.

[18] John Esmet, Michael A. Bender, Martin Farach-Colton,

and Bradley C. Kuszmaul. “The TokuFS Streaming File

System”. In: Proceedings of the 4th USENIX Conference
on Hot Topics in Storage and File Systems (HotStor-
age’12). 2012, p. 14.

[19] Ext4 Disk Layout. https://ext4.wiki.kernel.org/index.
php/Ext4_Disk_Layout.

[20] Ext4 Filesystem. https : / / www . kernel . org / doc /
Documentation/filesystems/ext4.txt.

[21] Facebook. RocksDB. https://rocksdb.org.
[22] fallocate(2) — Linux manual page. https://www.man7.

org/linux/man-pages/man2/fallocate.2.html.
[23] Sanjay Ghemawat and Jeff Dean. LevelDB. https : / /

github.com/google/leveldb.
[24] Eran Gilad, Edward Bortnikov, Anastasia Braginsky,

Yonatan Gottesman, Eshcar Hillel, Idit Keidar, Nurit

Moscovici, and Rana Shahout. “EvenDB: Optimizing

Key-Value Storage for Spatial Locality”. In: Proceedings
of the Fifteenth European Conference on Computer
Systems (EuroSys’20). 2020.

[25] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie

Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng

Wang, Wei Cao, and Qiang Li. “X-Engine: An Opti-

mized Storage Engine for Large-Scale E-Commerce

Transaction Processing”. In: Proceedings of the 2019
International Conference on Management of Data. 2019,
pp. 651–665.

[26] Stratos Idreos and Mark Callaghan. “Key-Value Stor-

age Engines”. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2020,
pp. 2667–2672.

[27] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and

Sungjin Lee. “PinK: High-speed In-storage Key-value

Store with Bounded Tails”. In: 2020 USENIX Annual
Technical Conference (USENIX ATC 20). 2020, pp. 173–
187.

15

https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
https://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://rocksdb.org
https://www.man7.org/linux/man-pages/man2/fallocate.2.html
https://www.man7.org/linux/man-pages/man2/fallocate.2.html
https://github.com/google/leveldb
https://github.com/google/leveldb

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

[28] Inserting a hole into a file. https://lwn.net/Articles/
629965/.

[29] Intel® Optane™ Technology. https://www.intel.com/
content/www/us/en/architecture-and-technology/
intel-optane-technology.html.

[30] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-

tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant

Pandey, Phaneendra Reddy, Leif Walsh, Michael A.

Bender, Martin Farach-Colton, Rob Johnson, Bradley

C. Kuszmaul, and Donald E. Porter. “BetrFS: Write-

Optimization in a Kernel File System”. In: ACM Trans.
Storage 11.4 (2015).

[31] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,

Sam H. Noh, and Young-Ri Choi. “SLM-DB: Single-

Level Key-Value Store with Persistent Memory”. In:

Proceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST’19). 2019, pp. 191–204.

[32] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.

“Redesigning LSMs for Nonvolatile Memory with

NoveLSM”. In: Proceedings of the 2018 USENIX Confer-
ence on Usenix Annual Technical Conference (USENIX
ATC’18). 2018, pp. 993–1005.

[33] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-

sidas. “Reaping the Performance of Fast NVM Storage

with Udepot”. In: Proceedings of the 17th USENIX
Conference on File and Storage Technologies. 2019,
pp. 1–15.

[34] Changman Lee, Dongho Sim, Joo-Young Hwang, and

Sangyeun Cho. “F2FS: A New File System for Flash

Storage”. In: Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies (FAST’15). 2015,
pp. 273–286.

[35] D. De Leo and P. Boncz. “Packed Memory Arrays -

Rewired”. In: 2019 IEEE 35th International Conference
on Data Engineering (ICDE). 2019, pp. 830–841.

[36] Baptiste Lepers, Oana Balmau, Karan Gupta, andWilly

Zwaenepoel. “KVell: The Design and Implementation

of a Fast Persistent Key-Value Store”. In: Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19). 2019, pp. 447–461.

[37] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo,

and Ke Yi. “Tree Indexing on Solid State Drives”. In:

Proc. VLDB Endow. 3.1–2 (2010), pp. 1195–1206.
[38] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. “WiscKey: Separating Keys from Values

in SSD-conscious Storage”. In: 14th USENIX Confer-
ence on File and Storage Technologies (FAST’16). 2016,
pp. 133–148.

[39] Chen Luo and Michael J Carey. “LSM-based storage

techniques: a survey”. In: The VLDB Journal 29.1
(2020), pp. 393–418.

[40] Peter Macko, Margo Seltzer, and Keith A. Smith.

“Tracking Back References in a Write-Anywhere File

System”. In: Proceedings of the 8th USENIX Conference
on File and Storage Technologies (FAST’10). 2010, p. 2.

[41] MongoDB. https://www.mongodb.com/.
[42] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and

Elizabeth O’Neil. “The Log-Structured Merge-Tree

(LSM-Tree)”. In: Acta Inf. 33.4 (1996), pp. 351–385.
[43] Michael A Olson, Keith Bostic, and Margo I Seltzer.

“Berkeley DB.” In: USENIX Annual Technical Confer-
ence, FREENIX Track. 1999, pp. 183–191.

[44] Anastasios Papagiannis, Giorgos Saloustros, Pilar

González-Férez, and Angelos Bilas. “Tucana: Design

and Implementation of a Fast and Efficient Scale-up

Key-Value Store”. In: Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference
(USENIX ATC’16). 2016, pp. 537–550.

[45] PerconaFT (TokuDB). https://github.com/percona/
PerconaFT.

[46] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. “PebblesDB: Building Key-Value

Stores Using Fragmented Log-Structured Merge

Trees”. In: Proceedings of the 26th Symposium on Oper-
ating Systems Principles (SOSP’17). 2017, pp. 497–514.

[47] Kai Ren and Garth Gibson. “TABLEFS: Enhancing

Metadata Efficiency in the Local File System”. In:

Proceedings of the 2013 USENIX Conference on Annual
Technical Conference (USENIX ATC’13). 2013, pp. 145–
156.

[48] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.

“SlimDB: A Space-Efficient Key-Value Storage Engine

for Semi-Sorted Data”. In: Proc. VLDB Endow. 10.13
(2017), pp. 2037–2048.

[49] RocksDB Tuning Guide. https://github.com/facebook/
rocksdb/wiki/RocksDB-Tuning-Guide.

[50] Ohad Rodeh. “B-Trees, Shadowing, and Clones”. In:

ACM Trans. Storage 3.4 (2008).
[51] Ohad Rodeh, Josef Bacik, and Chris Mason. “BTRFS:

The Linux B-Tree Filesystem”. In: ACM Trans. Storage
9.3 (2013).

[52] Mendel Rosenblum and John K. Ousterhout. “The

Design and Implementation of a Log-Structured File

System”. In: ACM Trans. Comput. Syst. 10.1 (1992),

pp. 26–52.

[53] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-

hout. “Log-Structured Memory for DRAM-Based Stor-

age”. In: Proceedings of the 12th USENIX Conference on
File and Storage Technologies (FAST’14). 2014, pp. 1–16.

[54] Felix Martin Schuhknecht, Jens Dittrich, and Ankur

Sharma. “RUMA Has It: Rewired User-Space Memory

Access is Possible!” In: Proc. VLDB Endow. 9.10 (2016),
pp. 768–779.

[55] Kai Shen, Stan Park, and Meng Zhu. “Journaling of

Journal is (Almost) Free”. In: Proceedings of the 12th
16

https://lwn.net/Articles/629965/
https://lwn.net/Articles/629965/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.mongodb.com/
https://github.com/percona/PerconaFT
https://github.com/percona/PerconaFT
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

Building an Efficient Key-Value Store in a Flexible Address Space EuroSys ’22, April 5–8, 2022, RENNES, France

USENIX Conference on File and Storage Technologies
(FAST’14). 2014, pp. 287–293.

[56] Pradeep Shetty, Richard Spillane, Ravikant Malpani,

Binesh Andrews, Justin Seyster, and Erez Zadok.

“Building Workload-Independent Storage with VT-

Trees”. In: Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST’13). 2013, pp. 17–
30.

[57] Symas Lightning Memory-mapped Database. https://
symas.com/lmdb/.

[58] The SGI XFS Filesystem. https://www.kernel.org/doc/
Documentation/filesystems/xfs.txt.

[59] Darrick Wong, Dave Chinner, Eric Sandeen, Ryan

Lerch, and Sillion Graphics Inc.XFS Algorithms &Data
Structures, 3rd Edition. 2018.

[60] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-

Dusseau. “Towards an Unwritten Contract of Intel

Optane SSD”. In: Proceedings of the 11th USENIX
Conference on Hot Topics in Storage and File Systems
(HotStorage’19). 2019, p. 3.

[61] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.

“LSM-trie: An LSM-tree-based Ultra-Large Key-Value

Store for Small Data Items”. In: 2015 USENIX Annual
Technical Conference (USENIX ATC’15). 2015, pp. 71–
82.

[62] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.

“HiKV: A Hybrid Index Key-Value Store for DRAM-

NVM Memory Systems”. In: Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Con-
ference. 2017, pp. 349–362.

[63] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,

and Swaminathan Sundararaman. “Don’t Stack Your

Log On My Log”. In: 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads
(INFLOW’14). 2014.

[64] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A large

scale analysis of hundreds of in-memory cache clus-

ters at Twitter”. In: 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI’20).
2020, pp. 191–208.

[65] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu

Tang, Hong Jiang, Changsheng Xie, and Xubin He.

“MatrixKV: Reducing Write Stalls and Write Ampli-

fication in LSM-tree Based KV Stores with Matrix

Container in NVM”. In: 2020 USENIX Annual Technical
Conference (USENIX ATC’20). 2020, pp. 17–31.

[66] Jun Yuan, Yang Zhan, William Jannen, Prashant

Pandey, Amogh Akshintala, Kanchan Chandnani,

Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael A.

Bender, Martin Farach-Colton, Rob Johnson, Bradley

C. Kuszmaul, and Donald E. Porter. “Optimizing Every

Operation in a Write-Optimized File System”. In:

Proceedings of the 14th Usenix Conference on File and
Storage Technologies. 2016, pp. 1–14.

[67] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr,

Michael A. Bender, Martin Farach-Colton, William

Jannen, Rob Johnson, Donald E. Porter, and Jun Yuan.

“The Full Path to Full-Path Indexing”. In: Proceedings
of the 16th USENIX Conference on File and Storage
Technologies (FAST’18). 2018, pp. 123–138.

[68] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang.

“In-Memory Big Data Management and Processing: A

Survey”. In: IEEE Transactions on Knowledge and Data
Engineering 27.7 (2015), pp. 1920–1948.

[69] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song

Jiang. “REMIX: Efficient Range Query for LSM-trees”.

In: 19th USENIX Conference on File and Storage Tech-
nologies (FAST 21). 2021, pp. 51–64.

A Artifact Appendix
A.1 Abstract
The artifact contains our implementation of FlexTree, FlexS-

pace, FlexDB, and the scripts we used to produce the reported

evaluation results. It demonstrates a bottom-up design of a

data management application based on the abstraction of a

flexible address space. The goal of this artifact is to allow

readers to reproduce the paper’s key results, and build new

research on top of our proposed work.

A.2 Description & Requirements

A.2.1 How to access The source code of FlexTree, FlexS-

pace, FlexDB and their future updates can be found at: https://
github.com/flexible-address-space/flexspace. The materials

used in this paper’s artifact evaluation are archived at: https:
//github.com/flexible-address-space/eurosys22-artifact. The
instruction for artifact evaluation is documented in a sepa-

rate file, README.md, in the artifact repository. These materi-

als are indexed by https://doi.org/10.5281/zenodo.6345713.

A.2.2 Hardware dependencies The system functionality

does not require special hardware. To reproduce the experi-

ment results, we suggest using similar hardware as we used

in our evaluation (Intel 10-core Xeon Silver 4210 CPU, 64GB

RAM and Intel Optane 905P SSD with 960GB capacity).

A.2.3 Software dependencies This artifact now only

supports operating systems using the Linux kernel. To

build our systems, it is required to use a Linux kernel with

io_uring support (version 5.1 and up). The user space

dependencies are liburing, jemalloc and clang.

A.2.4 Benchmarks The code for micro-benchmarks de-

scribed in the paper has been included in the artifact mate-

rials. Specifically, the benchmark code for FlexDB contains

an implementation of the YCSB [10] benchmark. The file

systems we used to compare against FlexSpace are all in

the Linux kernel source tree. The RocksDB we used in the

evaluation is unmodified and can be fetched from its public

17

https://symas.com/lmdb/
https://symas.com/lmdb/
https://www.kernel.org/doc/Documentation/filesystems/xfs.txt
https://www.kernel.org/doc/Documentation/filesystems/xfs.txt
https://github.com/flexible-address-space/flexspace
https://github.com/flexible-address-space/flexspace
https://github.com/flexible-address-space/eurosys22-artifact
https://github.com/flexible-address-space/eurosys22-artifact
https://doi.org/10.5281/zenodo.6345713

EuroSys ’22, April 5–8, 2022, RENNES, France Chen Chen, Wenshao Zhong, and Xingbo Wu

source code. We used a patched version of KVell to support

variable-sized keys. Its code is archived at: https://github.
com/flexible-address-space/eurosys22-artifact-kvell.

A.3 Set-up
The artifact is verified to compile on Arch Linux with kernel

version 5.10.32 LTS, and all user-level dependency packages

(clang 12.0.1, jemalloc 5.2.1 and liburing 2.0).

A.4 Evaluation workflow

A.4.1 Major Claims First, FlexTree achieves significantly

lower asymptotic (and practical) time complexity on shift op-

erations compared to B
+
-Tree, and it introduces a negligible

extra cost on regular index operations. Second, FlexSpace

realizes faster insert-range and collapse-range speed com-

pared to address spaces provided bymajor file systems. Third,

FlexDB shows high performance and low write amplification

under various micro-benchmarks and real-world workloads

with a simple design.

A.4.2 Experiments We provide fully automated scripts to

run the experiments and interpret the results with minimal

effort. You can use them to run the experiments following

the documentation in https://github.com/flexible-address-
space/eurosys22-artifact. We expect that the results are

similar to those reported in the paper, or showing a similar

trend (i.e., do not affect the major claims).

A.5 General Notes
This appendix only applies to the artifact submitted for

evaluation. Future updates of the implementation will be

made available through the main repository.

18

https://github.com/flexible-address-space/eurosys22-artifact-kvell
https://github.com/flexible-address-space/eurosys22-artifact-kvell
https://github.com/flexible-address-space/eurosys22-artifact
https://github.com/flexible-address-space/eurosys22-artifact

	Abstract
	1 Introduction
	2 Limitations of File Address Spaces
	3 FlexTree
	3.1 The Structure of FlexTree
	3.2 FlexTree Operations
	3.3 Implementation

	4 FlexSpace
	4.1 Space Management
	4.2 Metadata Management and Consistency

	5 FlexDB
	5.1 Managing KV Data in a FlexSpace
	5.2 Interval Caching
	5.3 Supporting Concurrent Access
	5.4 Crash Recovery and Index Rebuilding

	6 Evaluation
	6.1 FlexTree as an Address Space Index
	6.2 The FlexSpace Library
	6.3 FlexDB Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 General Notes

