
Fast Abort-Freedom for
Deterministic Transactions
Chen Chen1, Xingbo Wu2, Wenshao Zhong1, Jakob Eriksson1

1 University of Illinois at Chicago
2 Microsoft Research

1

Concurrent Transactions

● Transaction: a logical unit of multiple data access operations

2

Concurrent Transactions

● Transaction: a logical unit of multiple data access operations

3

Transfer

$100

A B

Concurrent Transactions

● Transaction: a logical unit of multiple data access operations

4

Transfer

$100
Procedures

1) Check balance of B
2) Subtract $100 from B
3) Add $100 to A

A B

Concurrent Transactions

● Transaction: a logical unit of multiple data access operations

5

Transfer

$100
Procedures

1) Check balance of B
2) Subtract $100 from B
3) Add $100 to A

A B

Atomic IsolatedConsistent

A lot of transactions concurrently

Concurrency Control

● Properly utilizing hardware parallelism

6

Concurrency Control

● Properly utilizing hardware parallelism

7

T1

T2

x += 1

y += 1

Time

Concurrency Control

● Properly utilizing hardware parallelism

8

x += 1

x += 1

Time

T1

T2

Concurrency Control

● Properly utilizing hardware parallelism

9

x += 1

x += 1

Time

T1

T2

Concurrency Control

10

● Pessimistic, locking based: 2-phase locking (2PL)

2PL
(wait-die)

Concurrency Control

11

● Pessimistic, locking based: 2-phase locking (2PL)
● Optimistic concurrency control (OCC)

2PL
(wait-die)

OCC

Concurrency Control

12

● Pessimistic, locking based: 2-phase locking (2PL)
● Optimistic concurrency control (OCC)

2PL
(wait-die)

OCC

Abort and deterministic transactions

● Abort is inevitable if:
○ The data access of a transaction is unknown

13

Abort and deterministic transactions

● Abort is inevitable if:
○ The data access of a transaction is unknown

● Deterministic transactions bring new opportunities
○ w/ known read set and write set

14

Abort and deterministic transactions

● Abort is inevitable if:
○ The data access of a transaction is unknown

● Deterministic transactions bring new opportunities
○ w/ known read set and write set

● Exploit determinism:
○ Ordered locking

15

Abort and deterministic transactions

● Abort is inevitable if:
○ The data access of a transaction is unknown

● Deterministic transactions bring new opportunities
○ w/ known read set and write set

● Exploit determinism:
○ Ordered locking
○ Batched scheduling

16

Abort and deterministic transactions

● Abort is inevitable if:
○ The data access of a transaction is unknown

● Deterministic transactions bring new opportunities
○ w/ known read set and write set

● Exploit determinism:
○ Ordered locking
○ Batched scheduling

17

Scalability?

Idea

● Get the best of 2PL, scheduling and OCC

18

Idea

● Get the best of 2PL, scheduling and OCC
○ 2PL: locking
○ Scheduling: centralized scheduler
○ OCC: opportunistic commit

19

Idea

● Get the best of 2PL, scheduling and OCC
○ 2PL: locking queuing
○ Scheduling: centralized scheduler decentralized scheduling
○ OCC: opportunistic commit deterministic commit order

20

Idea

● Get the best of 2PL, scheduling and OCC
○ 2PL: locking queuing
○ Scheduling: centralized scheduler decentralized scheduling
○ OCC: opportunistic commit deterministic commit order

● Each transaction can observe their global order individually,
with minimal cost.

21

Idea

● Get the best of 2PL, scheduling and OCC
○ 2PL: locking queuing
○ Scheduling: centralized scheduler decentralized scheduling
○ OCC: opportunistic commit deterministic commit order

● Each transaction can observe their global order individually,
with minimal cost.

● DecentSched

22

DecentSched

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

23

DecentSched

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

24

x

y

z

T1 T2

T2 T3

T3 T1

Queuing

DecentSched

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

25

x

y

z

T1 T2

T2 T3

T3 T1

Queuing Dependency tracking

T1 T2 T3

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

DecentSched

26

x

y

z

T1 T2

T2 T3

T3 T1

Queuing Dependency tracking

T1 T2 T3

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

DecentSched

27

x

y

z

T1 T2

T2 T3

T3 T1

Queuing Dependency tracking

T1 T2 T3

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

DecentSched

28

x

y

z

T1 T2

T2 T3

T3 T1

Queuing Dependency tracking

T1 T2 T3

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

DecentSched

29

x

y

z

T1 T2

T2 T3

T3 T1

Queuing Dependency tracking

T1 T2 T3

Direct

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

DecentSched

30

x

y

z

T1 T2

T2 T3

T3 T1

Queuing Dependency tracking

T1 T2 T3

Direct
Indirect

DecentSched

● Three transactions accessing three variables
○ T1: x, z

○ T2: x, y

○ T3: y, z

31

Dependency tracking

T1 T2 T3

Dependency set

T1: { T3
(direct)

, T2
(indirect)

 }

T2: { T1
(direct)

, T3
(indirect)

 }

T3: { T2
(direct)

, T1
(indirect)

 }

● Scheduling transaction T is done by evaluating each transaction
T’ in its dependency set.

DecentSched

32

1. Ignore T’ if If T’ and T are not each other’s direct dependencies.
2. Otherwise:

a. Unidirectional -> unconditional wait
b. Bidirectional (cyclic) -> lower id executes first

● Scheduling transaction T is done by evaluating each transaction
T’ in its dependency set.

DecentSched

33

Dependency set

T1: { T3
(direct)

, T2
(indirect)

 }

T2: { T1
(direct)

, T3
(indirect)

 }

T3: { T2
(direct)

, T1
(indirect)

 }

● Scheduling transaction T is done by evaluating each transaction
T’ in its dependency set.

DecentSched

34

Dependency set

T1: precedes T3 and T2T1: { T3
(direct)

, T2
(indirect)

 }

T2: { T1
(direct)

, T3
(indirect)

 }

T3: { T2
(direct)

, T1
(indirect)

 }

● Scheduling transaction T is done by evaluating each transaction
T’ in its dependency set.

DecentSched

35

Dependency set

T1: { T3
(direct)

, T2
(indirect)

 }

T2: { T1
(direct)

, T3
(indirect)

 }

T3: { T2
(direct)

, T1
(indirect)

 }

T1: precedes T3 and T2
T2: waits for T1, precedes T3

● Scheduling transaction T is done by evaluating each transaction
T’ in its dependency set.

DecentSched

36

Dependency set

T1: { T3
(direct)

, T2
(indirect)

 }

T2: { T1
(direct)

, T3
(indirect)

 }

T3: { T2
(direct)

, T1
(indirect)

 }

T1: precedes T3 and T2
T2: waits for T1, precedes T3
T3: waits for T1 and T2

DecentSched

● Advantages in comparison

37

DecentSched

● Advantages in comparison
○ Compared to centralized scheduling:

■ No scheduler bottleneck

38

DecentSched

● Advantages in comparison
○ Compared to centralized scheduling:

■ No scheduler bottleneck
○ Compared to Locking:

■ No lock contentions

39

DecentSched

● Advantages in comparison
○ Compared to centralized scheduling:

■ No scheduler bottleneck
○ Compared to Locking:

■ No lock contentions
○ Compared to OCC:

■ Deterministic commit order

40

Evaluation: Transactional YCSB-A

41

Evaluation: Transactional YCSB-A

42

Evaluation: Transactional YCSB-A

43

Evaluation: Transactional YCSB-A

44

Evaluation: Transactional YCSB-A

45

longer

transactions

More Details in the Paper

● Implementation and optimizations
● Memory management
● TPC-C Benchmark Results
● Future works

● Code and artifacts are available on
https://github.com/decentralized-scheduling/

46

https://github.com/decentralized-scheduling/

