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Concurrent Transactions

● Transaction: a logical unit of multiple data access operations
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Concurrency Control

● Properly utilizing hardware parallelism
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● Scheduling transaction T is done by evaluating each transaction 
T’ in its dependency set.

DecentSched

32

1. Ignore T’ if If T’ and T are not each other’s direct dependencies.
2. Otherwise:

a. Unidirectional -> unconditional wait
b. Bidirectional (cyclic) -> lower id executes first
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● Advantages in comparison
○ Compared to centralized scheduling:

■ No scheduler bottleneck
○ Compared to Locking:

■ No lock contentions
○ Compared to OCC:

■ Deterministic commit order
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More Details in the Paper

● Implementation and optimizations
● Memory management
● TPC-C Benchmark Results
● Future works

● Code and artifacts are available on 
https://github.com/decentralized-scheduling/
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