
Fast Abort-Freedom for Deterministic Transactions
Chen Chen∗, Xingbo Wu†, Wenshao Zhong∗, Jakob Eriksson∗

∗University of Illinois at Chicago
†Microsoft Research

Abstract—The efficiency of concurrency control protocols plays
a crucial role in transaction processing systems. However, when it
comes to deterministic transactions (i.e., transactions with known
read/write key sets), existing concurrency control protocols are
not optimized to make the most of the determinism. They either
force transactions to be aborted and retried, which negatively
affects system throughput, or use a centralized scheduler to
organize transactions in a way that avoids aborts, but with limited
system scalability.

In this paper, we present DecentSched, a highly efficient
decentralized concurrency control protocol for deterministic
transactions. DecentSched employs fine-grained queuing and a
decentralized scheduling algorithm to enable serializable concur-
rent transaction execution with a high degree of parallelism. Ex-
tensive evaluation results show that DecentSched can outperform
state-of-the-art concurrency control protocols in representative
benchmarks.

Index Terms—Transaction processing, Transaction scheduling,
Concurrency control

I. INTRODUCTION

Transaction processing systems employ advanced concur-
rency control protocols to exploit parallelism on modern
hardware platforms. A major drawback of these protocols is
that they inherently induce transaction aborts. For example, op-
timistic concurrency control (OCC) detects conflicts between
concurrent transactions through commit-time validation [6, 20,
24, 26, 39, 43, 45]. It must abort transactions that violate the
isolation property. A pessimistic concurrency control protocol
like two-phase locking (2PL) identifies the dependencies
between concurrent transactions via per-object locking [1, 3,
4, 15, 19]. When transactions form cycles in the dependency
graph, some of them must abort to avoid deadlocks. A
transaction aborted by the concurrency control protocol must
keep retrying until committed successfully or aborted by
program logic. Under a highly contentious workload, excessive
aborts will result in a reduced level of parallelism, which
overshadows the benefits of concurrent transaction execution.

Concurrency control protocol induced aborts are caused
by the lack of determinism in transactions. For example, a
transaction in OCC cannot determine whether it can success-
fully commit when the execution starts [6, 20, 24, 39, 43].
In Wound-Wait 2PL [3], a transaction that has successfully
acquired locks can still be aborted by a transaction that started
earlier. Concurrency control protocols are bound to abort and
retry transactions due to the non-deterministic nature of gen-
eral transaction workloads. This limits the cost-effectiveness of
concurrent transaction processing in several aspects, including
unpredictable end-to-end latency, overwhelming contention on
shared data structures, and wasted computing resources.

In deterministic transaction processing systems, an oppor-
tunity exists to eliminate aborts and improve performance of
OLTP workloads [33, 35, 36, 37]. A deterministic transaction
has its read/write set known before it starts execution, which is
practical for a subset of real-world applications, for example,
financial transactions [37]. In such applications, concurrency
control protocols can utilize this knowledge to execute trans-
actions free of aborts. For instance, acquiring locks in a con-
sistent order can avoid deadlocking. Therefore, 2PL protocol
induced aborts can be completely eliminated. That said, a
transaction may still wait on each lock before it can proceed
to the next lock. Excessive waiting and lock contention can
compromise inter-transaction parallelism. Previous works pro-
posed scheduling transactions before execution by workload
analysis in single-node [16, 17, 32] or distributed [33, 35, 37]
systems. However, as the number of concurrent transactions
grows, the scheduling cost ultimately saturates the resources
of the monolithic scheduler. Therefore, a centralized scheduler
often becomes a scalability bottleneck [16].

We present DecentSched—short for Decentralized Schedul-
ing, a novel concurrency control protocol that gains high
parallelism and low latency in deterministic transactions.
In general, DecentSched exploits parallelism by properly
scheduling transactions across worker threads. Unlike the
existing approaches that use a centralized scheduler or con-
tentious lock operations, scheduling in DecentSched is done
by individual workers in a decentralized way. In DecentSched,
a transaction can determine its execution order in a global
schedule by itself, and the schedule is consistent across all
concurrent transactions. Therefore, concurrent transactions can
execute following their self-determined schedules without any
aborts. DecentSched is built on two core ideas. First, it
employs a queuing-based approach that allows transactions
to exchange data access conflicts at a low cost. Second, it
adopts a decentralized scheduling algorithm with which every
transaction can obtain a globally consistent execution schedule
without using a centralized scheduler.

DecentSched provides serializable isolation between con-
current transactions. In addition, it is adaptive to different
workload patterns without optimistic or pessimistic assump-
tions. We implement DecentSched as a library that can
be integrated into existing transaction processing systems.
Evaluations of DecentSched on a single-node OLTP system
show that it can achieve high throughput and retain low end-
to-end latency in representative benchmarks.

This paper is organized as follows. Section II gives essential
background information about concurrency control protocols.

1

Section III introduces the design of DecentSched. Section IV
evaluates DecentSched through multiple benchmarks and com-
pares it with the state-of-the-art. Section V discusses related
research works, and Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION

A concurrency control protocol arranges the execution of
simultaneous transactions to provide an illusion that a trans-
action has exclusive access to the data store (e.g., database),
which satisfies serializability. To better exploit parallelism,
modern transaction processing systems mainly employ two
types of concurrency control protocols—2PL and OCC [3, 24].

2PL is a representative pessimistic concurrency control
protocol that presumes frequent conflicts between concurrent
transactions. In 2PL, a transaction needs to acquire locks for
its accessed objects (e.g., rows in a database) before execution.
When a lock is already acquired by another transaction, the
transaction has to wait until the lock is released, which
constructs a wait-for dependency between the two transactions.
Since different transactions can access objects in different
order, deadlocks can occur due to circular waiting. To solve
this problem, 2PL must break cycles in the dependency graph
by aborting specific transaction(s). For example, as shown in
Figure 1, a transaction in Wait-Die 2PL [3] aborts itself if it
finds itself younger than the current lock holder. Similarly, a
transaction in Wound-Wait 2PL [3] kills (wounds) the lock
holder if the holder is younger.

In contrast to 2PL, OCC presumes that conflicts are rare. A
typical transaction in OCC first executes on a local copy of

A A

A

lock(x) lock(x)

T1

T2

lock(x) lock(y) C

C

C

C

COMMIT ABORT

EXECUTIONlock(x) lock(y)

Wait-Die 2PL

T1

T2

lock(x)
wound

lock(x) lock(x)

Wound-Wait 2PL

T1

T2

VERIFY

OCC

COPY

T1

T2

Ordered Locking

T1

T2

DecentSched

QUEUE

QUEUE

SCHEDULE

SCHEDULE WAIT

Time

lock(x) - Waiting on each lock
- Progress blocked

lock(y) A

A

lock(y)

lock(x) lock(y) C

C

VERIFYCOPY

lock(y)

EXECUTION

EXECUTION

VERIFYCOPY CEXECUTIONEXECUTION

EXECUTION

EXEC.

C

EXECUTION C

EXECUTION C

EXECUTION C

EXECUTION

EXECUTION

Fig. 1: Examples of concurrent transactions in different proto-
cols. T1 has a lower transaction ID than T2 and they conflict
on two shared variables x and y.

the accessed data without blocking other transactions. Then,
locks are only briefly acquired for validation and committing.
Commits on hot objects can invalidate local copies and force
transactions that are running opportunistically to abort and
retry. In the worst case, a transaction may never successfully
commit due to conflicts on hot items [10, 19].

The absence of determinism in general transactions often
results in unavoidable aborts, constraining the efficiency of
concurrency control protocols. By adopting a deterministic
transaction model, there is a chance to achieve determinism in
concurrent transaction processing while significantly reducing
or even eliminating aborts [33, 35, 36, 37]. However, 2PL and
OCC fail to utilize the determinism because they are incapable
of capturing and resolving complex dependencies. A lock
in 2PL only represents a unidirectional wait-for relationship.
Therefore, abort-and-retry is the only available measure for
avoiding deadlocks. A transaction in OCC is unaware of
other conflicted ongoing transactions. Therefore, commits are
purely opportunistic in OCC. On the other hand, existing
solutions that utilize the determinism face other challenges,
including contention and waiting with ordered locking and
scalability bottleneck with centralized transaction scheduling,
as discussed in Section I.

In summary, the aforementioned concurrency control proto-
cols do not achieve maximal determinism while maintaining
high efficiency. To get the best of both worlds, we present
DecentSched, a concurrency control protocol that realizes
decentralized scheduling, where individual transactions can
obtain their execution order from a globally consistent sched-
ule on their own. Its design combines and extends the core
ideas of 2PL and centralized scheduling. First, it upgrades
2PL’s per-object locks to per-object queues to capture essential
ordering information of concurrent transactions on each object.
Second, it adopts a decentralized scheduling algorithm with
which a transaction can derive its execution order based on its
queuing ranks in a decentralized way.

III. DECENTSCHED

This section describes the design of DecentSched. We first
introduce the system model of DecentSched (§III-A). Then, we
present how DecentSched exploits determinism by introducing
its per-object queuing and decentralized scheduling (§III-B).
After that, we discuss the correctness of DecentSched (§III-C).
Finally, we introduce DecentSched’s implementation details,
including queue implementation, memory management, trans-
action ID allocation, and optimizations (§III-D).

A. System Model

In DecentSched, the smallest data access unit is an object
(often referred to as a row in a database table). An object has
a globally unique ID (oid) and it can be reached by looking
up an index using its oid. For simplicity, we use objs[oid]
to represent an object access.

A transaction in DecentSched consists of a sequence of
operations over a set of objects. Each transaction has an access
set which records the oid of every object to be accessed,

2

Algorithm 1 Queuing
1: function ENQUEUE(T)
2: T.ready ← false
3: T.finished ← false
4: for each access ∈ T.access set do
5: queue ← objs[access.oid].queue
6: type ← access.type
7: access.entry ← {T.tid, type}
8: ATOMIC ENQUEUE(queue, access.entry)

along with an access type (either read-only or read-write,
denoted as R and W respectively). We assume the access set of a
transaction is known before it starts execution, which is similar
to previous works that target deterministic transactions [16, 17,
32, 33, 35, 36, 37]. Each transaction has a globally unique
ID (tid), and is denoted as Ttid. The tids are allocated
in monotonically ascending order. DecentSched maintains
an array of transaction metadata, indexed by tids, that is
accessible by all threads in the system. txns[tid] represents
an access to a transaction’s metadata.

DecentSched uses multiple worker threads for concurrent
transaction processing. Each worker thread processes exactly
one transaction at a time until the transaction successfully
commits, or aborts due to program logic. Once a transaction
commits, the updated objects (of read-write access type W)
are made visible to all the worker threads in the system. If a
transaction aborts, all pending updates are discarded.

B. Protocol Design

DecentSched processes a transaction in five phases —
queuing, decentralized scheduling, waiting, executing, and
committing. A transaction first uses queuing and decentralized
scheduling in DecentSched to obtain its execution order in a
globally consistent schedule. Then, it waits for its predecessors
according to the schedule, executes the program logic, and
finally commits the updates. The program logic can induce
aborts in the executing phase. Compared to traditional trans-
action scheduling solutions, DecentSched differs primarily in
the first two phases. Thus, we focus below on explaining how
queuing and decentralized scheduling work.

1) Per-object Queuing: DecentSched uses a queuing-based
approach to capture essential timing information of concurrent
transactions, which determines their execution order. This
approach is based on the intuition that multiple threads can
access an object on a first-come, first-served (FCFS) basis.

Using one queue to handle transaction scheduling is intu-
itive. However, a single queue, like a centralized scheduler,
can easily cause scalability issues. Therefore, DecentSched
employs per-object queuing by maintaining a queue for each
object in the system. For each transaction, the corresponding
worker thread enqueues on every object in the transaction’s
access set. A queue entry records the tid of the transaction as
well as the access type on the object. The pseudocode for the
queuing procedure is shown in Algorithm 1. Two atomic flags
of the transaction, ready and finished, are initially unset.
The usage of these flags will be introduced later.

If each transaction only accesses one object, the rank of
a transaction in its corresponding queue can be used to
determine the execution order. For example, in Figure 2a, each
transaction only needs to wait for the transaction ahead of
it to finish execution, so that all the transactions execute in
a serializable schedule. In the example, T1, T3, and T4 can
execute simultaneously without any waiting, while T2 must
wait for T1’s completion.

However, a real-world transaction must be able to access
multiple objects. Since multiple queue entries cannot be
inserted atomically, the order of transactions might differ on
different queues, which can cause circular dependency. For
example, in Figure 2b, T1, T2, and T3 form a cycle in the
dependency graph. As a result, the naive solution that only
identifies per-queue dependencies can cause deadlocks.

To make different worker threads derive a valid and
consistent schedule when facing circular dependencies, all
concurrent transactions in a cycle must be aware of the cycle in
the first place. Therefore, transactions must obtain information
beyond per-object dependencies. In addition, transactions in
the same cycle must make mutually consensual scheduling
decisions. In order to satisfy these requirements under a multi-
queue setup, we develop a decentralized scheduling algorithm.
In this algorithm, a transaction first collects sufficient de-
pendency information using lightweight queue searching to
reveal cycles, then determines its own execution order which
is conflict-free and deadlock-free.

2) Dependency Tracking: The dependency set of a trans-
action in DecentSched consists of direct and indirect depen-
dencies. For a transaction Ti, every Tj that is ahead of Ti
in any object’s queue is a direct dependency of Ti, unless
Ti and Tj only perform read-only operations on every object
accessed by both of them. All the transactions satisfying the
above criterion form the direct dependency set of Ti. Then,
the full dependency set of Ti can be derived by recursively
including the dependencies of those in Ti’s direct dependency
set. In other words, for every Tj in Ti’s dependency set, every
transaction Tk in Tj’s dependency set is also a dependency
of Ti. Accordingly, the extra transactions to be included are
included in Ti’s indirect dependency set. The tracking of
indirect dependencies allows transactions to observe cyclic
dependencies. For an arbitrary pair of transactions Ti and Tj,
if Ti and Tj are each other’s dependency (either direct or
indirect), they must appear in at least one same dependency
cycle. Below, we use T to denote a transaction, or its assigned
worker thread acting on its behalf.

obj1.tail
.tail obj2

obj3

T2 WT1 W
ObjectsQueues

T3 R

T4 W .tail

⟂
⟂
⟂

(a) Single-object access

obj1.tail
.tail obj2

obj3

T2 WT1 W
ObjectsQueues

T3 W

T1 R

T2 R

T3 W .tail

⟂
⟂
⟂

(b) Multi-object access

Fig. 2: Examples of per-object queues.

3

Algorithm 2 Direct Dependency Discovery
1: function DISCOVER DIRECT(T)
2: T.direct ← ∅
3: for each access ∈ T.access set do
4: entry ← access.entry
5: while entry.next != nil do
6: entry ← entry.next
7: if entry.type ̸= R or access.type ̸= R then
8: SET ADD(T.direct, entry.tid)
9: T.ready ← true

Algorithm 3 Indirect Dependency Discovery
1: function DISCOVER INDIRECT(T)
2: T.indirect ← ∅
3: for each tid ∈ T.direct do
4: DISCOVER INDIRECT REC(T, tid)
5: function DISCOVER INDIRECT REC(T, tid)
6: if MARK VISITED(T, tid) = false then
7: return
8: SET ADD(T.indirect, tid)
9: Td ← txns[tid]

10: wait until Td.ready = true
11: for each tid′ ∈ Td.direct do
12: DISCOVER INDIRECT REC(T, tid′)

A transaction T in DecentSched discovers its dependencies
as follows. After the queuing phase of T, T scans all its
accessed objects’ queues to identify its direct dependencies.
The pseudocode of this process is shown in Algorithm 2.
After all the direct dependencies have been recorded in T’s
direct dependency set, T’s ready flag is set. Accordingly, any
transaction that queries T’s direct dependency set must wait
for T’s ready flag to be set for completeness.

Then, T discovers its indirect dependencies based on the
direct dependencies. The pseudocode is shown in Algorithm 3.
In general, DecentSched adopts a depth-first search approach
to recursively discover a transaction’s indirect dependencies.
On each transaction Tv that is being visited, T must wait
until Tv’s ready flag is set (i.e., Tv’s direct dependencies
have been fully discovered). Then, T adds Tv as its indirect
dependency, and continues the recursive search over Tv’s
direct dependencies. Note that the recursive search continues
regardless of whether Tv has finished or not because not
all of its dependencies are guaranteed to have been finished
according to the scheduling rules (introduced later in §III-B3).
The search ignores visited transactions, including the searching
transaction itself, to avoid redundant work. We further discuss
the optimizations on searching in §III-B5.

We use T1 in Figure 2b to show how a transaction discovers
its dependency set and finds cycles. By scanning the queues
of obj1 and obj3, T1 sees T3 as a direct dependency. Then,
T1 recursively searches on T3’s direct dependencies and sees
T2 as an indirect dependency. Finally, T1 sees itself in T2’s
dependency set and ends the search. In the meantime, T2 and
T3 also perform searches in a similar way. As shown on the left
in Figure 3, after dependency discovery, T1–T3 include each
other in their dependency sets. T1 observes that it must be in a

T2 W

T3 W

T1 R

T1 W

direct indirect

T2 R

T3 W
T2T1 T3

T1 W

T3 W

T1 R

T2 W

T2 R T2T1 T3
T3 W

(1) w/ cycle (2) w/o cycle

Fig. 3: Two examples of transaction dependency. An arrow
from Ti to Tj means that Tj is Ti’s dependency.

cycle with T2 and T3 by finding itself in the dependency set of
T2 and T3, respectively. Figure 3’s right side shows a similar
example where T1 and T2’s positions are swapped on the first
queue. In that case, T1’s dependency set contains T2, but T2
has no dependencies. Therefore, T1 knows that it must not be
in any cycle containing T2.

When a transaction exists in multiple cycles, the dependency
tracking will add all the transactions in these cycles into
the dependency set. As a result, the transaction cannot tell
which dependencies belong to which cycles. In this condi-
tion, a transaction that appears in multiple cycles needs to
derive its execution order without identifying different cycles.
Meanwhile, all the other transactions must also obtain a
globally consistent schedule. In the following, we explain how
scheduling works without the knowledge of individual cycles.

3) Scheduling: A transaction Ti in DecentSched determines
its execution order solely based on its dependency set. For
each transaction Tj in Ti’s dependency set, if Ti is not in Tj’s
dependency set, Tj must have been positioned ahead of Ti
in all queues. Therefore, they are scheduled on a first-come,
first-serve basis. Specifically, Ti needs to wait until Tj finishes
execution.

Otherwise, when Ti is also in Tj’s dependency set, they
are likely in a cycle. In this scenario, their execution order
is determined by their tids’ ranks. Note that DecentSched’s
dependency discovery guarantees that running transactions
connected by any cycles see each other in their dependency
sets symmetrically, because an arbitrary pair of transactions
in a dependency cycle will reach each other during their
dependency discoveries. We use the following rule to order
transactions in a consistent way. For Ti, if both Ti and Tj are
in each other’s dependency set and i > j, Ti needs to wait
until Tj finishes execution.

The scheduling rules above can be implemented as follows.
For a transaction Ti, it checks each of its dependencies
(denoted as Tj). If i > j, Ti unconditionally waits for Tj.
Otherwise, Ti waits for Tj until either Tj finishes execution,
or Ti is added to Tj’s dependency set by Tj’s worker thread.

Under certain scenarios, the aforementioned scheduling
methods can make a transaction perform unnecessary waits.
Consider the example shown in Figure 4. After completing
their dependency discoveries, T1–T3 have each other in their
dependency sets. Following the scheduling rules introduced
above, T1 will execute first because it has the lowest tid in
the cycles. In the meantime, T2 needs to wait for T1 as they’re
in each other’s dependency set. However, T1 and T2 actually

4

T2 W

T3 R

T3 R

T2 W T3T2 T1
T3 W

T1 W

T1 W

T3 R

T1: {T3, T2}

* direct dependencies are
 marked in bold

x

x

T2: {T3, T1}

T3: {T1, T2}

⟂
⟂
⟂
⟂

direct indirect

Fig. 4: Multi-cycle example.

reside in different cycles and they do not have real conflicts.
Therefore, they should be able to execute in parallel.

DecentSched uses the following rule to avoid unnecessary
waiting between non-conflict transactions. For two transac-
tions Ti and Tj, if both of them are not each other’s direct
dependency, then we know that their access sets do not
conflict. As a result, they do not need to wait for each other.
In the example shown in Figure 4, T2 does not need to wait for
T1 because they both only have T3 as their direct dependency.

Algorithm 4 summarizes the scheduling rules DecentSched
applies to every transaction to let them make mutually con-
sensual scheduling decisions.

Algorithm 4 Scheduling
1: function SCHEDULE(T)
2: for each tid ∈ (T.direct ∪ T.indirect) do
3: Td ← txns[tid]
4: if tid /∈ T.direct and T.tid /∈ Td.direct then
5: continue
6: if T.tid > tid then
7: wait until Td.finished = true
8: else
9: deps ← Td.direct ∪ Td.indirect

10: wait until (T.tid ∈ deps or Td.finished = true)

4) Program Logic Execution and Commit: After the decen-
tralized scheduling phase, a transaction can safely execute with
exclusive access to its read-write objects, and no other trans-
action can modify its read-only objects during the execution.
The transaction may abort due to program logic or successfully
finish with its updates committed. Afterward, DecentSched
sets the transaction’s finished flag. Other transactions that
are waiting for the transaction can proceed once they observe
this flag change.

5) Search Pruning: Committed or aborted transactions
can still have a negative impact on search efficiency. Every
transaction has to scan queues of accessed objects to discover
direct dependencies. When a transaction’s finished flag has
been set, other transactions may still recursively search on its
dependency set because they may still find live transactions
from there (as described in the indirect dependency discovery).
The cost of scanning and search will keep increasing as the
number of enqueued transactions on each queue grows.

DecentSched adds a flag on each transaction to enable the
pruning of search paths. It marks a transaction T as retired
when: (1) every transaction in T’s dependency set has finished,
and (2) every transaction that is ahead of T in a queue has
finished, regardless of whether the transaction is in conflict

with T or not. The flagged transactions can help prune search
paths. When discovering direct dependencies by scanning
queues, T can stop traversing a queue when it reaches a
retired transaction because all transactions ahead of the retired
transaction have finished. Finished transactions can be safely
ignored because they will not conflict with T. On the other
hand, when discovering indirect dependencies by searching, T
does not initiate a search starting from a retired transaction,
which avoids unnecessary traversals in the search space.

Similar reasoning also applies when T adds a transaction
into its dependency set during dependency discovery. If the
transaction is finished, T does not add it to T’s dependency set
(either direct or indirect) because a finished transaction does
not conflict with T. Note that T will still continue scanning the
queue or initiate further dependency search if the transaction
is only finished but not retired for completeness.

Whether a finished transaction is retired or not is actively
evaluated by other transactions when they are searching in the
transaction’s dependency set. To facilitate retirement evalua-
tion, a transaction’s metadata also records all the unfinished
transactions ahead of it in the queues. Since a worker thread
in DecentSched runs one transaction at a time, the total num-
ber of transactions (including dependencies and transactions
ahead) recorded in each transaction’s metadata is bounded by
the number of worker threads.

C. Correctness

We present the argument for the correctness of DecentSched
from three aspects. First, the recursive exploration of indirect
dependencies of a transaction is devoid of data races and
terminates in a finite number of steps. Second, the decen-
tralized scheduling is free of deadlocks. Third, DecentSched
provides serializability, which renders concurrent execution of
transactions equivalent to a sequential order of execution.

1) Search Termination and Race-freedom: A recursive
search for indirect dependencies terminates in finite steps.
This can be proved by contradiction. If a recursive search
by a transaction does not stop, there is at least one search
path that can be indefinitely extended by visiting an ever-
increasing number of transactions. According to the search
algorithm, all the transactions on this path will also encounter
an indefinite search. Therefore, none of them can finish the
search. Since every worker thread in DecentSched runs one
transaction at a time, the number of running transactions is
bounded. Thus, the ever-increasing number of transactions on
the path contradicts the fact of having a bounded number
of worker threads. Therefore, a recursive search process in
DecentSched terminates. Since the dependency detection algo-
rithm only reads other transactions’ metadata, and it proceeds
only when a transaction’s READY flag is set, no data races
would occur during this process. The reason is that dependency
detection only requires direct dependencies of the transactions
on the search path, and a transaction’s direct dependencies are
immutable after its READY flag is set.

2) Deadlock-free Scheduling: In DecentSched, a transac-
tion recursively extends its dependency set by including its

5

indirect dependencies. Therefore, all the transactions in a
dependency cycle are aware of the cycle and see each other
in a symmetrical way. The scheduling rules guarantee that the
transaction with the smallest tid in a cycle can start execution,
followed by the other transactions ordered by their tids. When
a transaction resides in multiple cycles, the transactions in
all these cycles will be recursively added into each other’s
dependency set as if they’re all in the same cycle. Similarly,
these transactions can always make progress starting from the
one of the smallest tid.

3) Serializability: DecentSched naturally provides serializ-
ability because transactions in conflict form a sequential sched-
ule based on their tids. For an arbitrary pair of transactions
Ti and Tj, if they do not access the same objects or only read
the same objects, their concurrent executions do not violate
serializability. If Ti and Tj have read-write or write-write
conflicts on some objects, one of the following stands: (1) Tj
is in Ti’s dependency set while Ti is not in Tj’s dependency
set. (2) Ti is in Tj’s dependency set while Tj is not in Ti’s
dependency set. (3) Ti and Tj are in each other’s dependency
set. For all of the three cases, Ti and Tj will not execute in
parallel according to the scheduling rules.

D. Implementation and Optimization

We implement DecentSched as a user-level library. In the
following, we introduce the implementation details of the
DecentSched library.

1) Queue: Each queue in DecentSched is a lock-free
singly linked list. Before enqueuing, each transaction allocates
memory for its queue entries and writes the corresponding tid
and access types to the entries. Then, it enqueues on each
queue with an atomic compare-and-swap (CAS) operation,
plus occasional retries under contention.

The number of per-object queues in DecentSched grows
as the number of objects increases. Maintaining a large
number of queues can cause high memory usage and poor
cache efficiency. To overcome this limitation, DecentSched
employs queue sharing that bounds the number of queues to a
configurable number m. Objects are mapped to the m queues
by their object ID. Specifically, the queue index (qid) of an
object is calculated as qid = hash(oid) mod m.

Before queuing, a transaction first calculates the correspond-
ing qids based on its access set. Then, it follows regular
queuing routines to enqueue. Note that if multiple objects in
its access set map to the same queue, the transaction only
allocates one entry for the queue and sets the access type
accordingly. If there are mixed access types (both read-only
and read-write), the access type of the entry will be set to
read-write (W).

Queue sharing can incur false positives in conflict detection
which causes unnecessary waiting. However, with a sufficient
number of queues, the false positive rate can be controlled at a
low level, and the performance impact is negligible in practice.
More importantly, it does not affect DecentSched’s correctness
(i.e., deadlock-freedom and serializability). Queue sharing also
helps retain the space efficiency of DecentSched and makes

DecentSched tunable for different sizes of data. We further
evaluate the effectiveness of queue sharing in Section IV.

2) Memory Management: DecentSched employs epoch-
based memory management to avoid frequent memory allo-
cations and expensive garbage collection operations. It splits
time into epochs and an epoch ends when either of the
following is satisfied: (1) a worker thread has processed at
least k transactions; (2) the current epoch has lasted over t
milliseconds. Both k and t are tunable parameters. At the end
of each epoch, all worker threads synchronize on a barrier.
After that, the memory used in the previous epoch is fully
reclaimed at a low cost.

3) Transaction ID Allocation: In DecentSched, the trans-
action scheduling relies on the value of tids to decide
the execution orders when dependency cycles appear. It is
necessary to allocate tids in a fair way to avoid privileged
worker threads. An intuitive tid allocation method is using
a global integer and letting worker threads perform atomic
fetch-and-add operations to obtain their tids. In this way,
the transactions can be approximately ranked by start time.
However, a globally shared variable can become a bottleneck
on multi-core platforms [11, 39, 43].

Each worker thread in DecentSched allocates tids using
a thread-local counter to avoid contention. With w worker
threads in the system, a worker thread with worker ID i
(0 ≤ i < w) starts to assign tids from i, with an increment
of w after each transaction. That said, the tids allocated
by different worker threads may diverge between faster and
slower workers over time. As a result, transactions running on
worker threads with fewer executed transactions will always
be prioritized when it’s in a cycle. This can be unfair to faster
workers. DecentSched mitigates the problem by reinitializing
every allocation counter to the respective worker ID (i) at the
beginning of each epoch. Therefore, the tid divergence in an
epoch does not persist beyond the epoch. Additionally, the
maximum number of transactions in an epoch is bounded so
that tids never overflow.

4) Opportunistic Execution: While a transaction is waiting,
its worker thread will try to execute the transaction logic
locally. If the transaction begins its actual execution according
to the global schedule and the local read sets have not
been updated since the last attempted execution, it will be
committed directly. To verify this, an atomic version number
is assigned to each object in the system. When a transaction
is committed, the version number of each object in its write
set is incremented by 1.

5) Memory Footprint: DecentSched maintains a transaction
metadata array and multiple queues. These structures are
lightweight in-memory metadata. When there are 32 worker
threads, 16384 queues, and 1024 transactions per worker
thread per epoch, the memory allocated for all structures
costs 62 MB of memory, which is not a point of concern in
commodity servers.

6

IV. EVALUATION

We integrate DecentSched into the codebase of Bamboo [2,
19], which contains an up-to-date version of DBx1000, a
multi-core in-memory transaction processing system often
used as a benchmark suite for performance evaluation [12,
42]. DBx1000 implements various state-of-the-art concurrency
control protocols that can be compared against DecentSched
in the same system framework and benchmarks. To make
sure the baseline protocols are correctly configured in our
experiments, we tune the parameters of Bamboo’s DBx1000
implementation and validate its performance against STOv2,
another representative multi-core in-memory transaction pro-
cessing system [21]. Specifically, we employ hash-based data
indexing and NUMA-aware memory allocation based on
jemalloc [22]. In terms of contention regulation, we use
a randomized exponential backoff strategy and the backoff
buffer stores up to three recently aborted transactions. These
configurations achieve matched throughput results in the TPC-
C-NP benchmark (see §IV-B) for the TicToc protocol imple-
mented in both systems.

We run the experiments with DecentSched and four classes
of protocols that provide serializable isolation: centralized
scheduling, ordered locking, OCC, and 2PL. We evaluate
more than one implementation for each of OCC and 2PL as
listed below. To demonstrate the performance characteristics
of different protocol classes, we consolidated the results of
each class by picking the best result (the highest throughput)
for each data point. For example, data points on a throughput
curve of OCC can be a mix of Silo and TicToc’s results,
whichever has the highest throughput.

• C-Sched: A centralized scheduling approach using a
dedicated thread to arrange all the transactions.

• Ord-Lock: A locking-based protocol where each trans-
action acquires locks in a consistent order.

• Silo (OCC) [39]: A variant of OCC with contention-free
transaction ID allocation.

• TicToc (OCC) [43]: A variant of OCC that provides
decentralized timestamp allocation for better scalability.

• Bamboo (2PL) [19]: An enhanced Wound-Wait 2PL that
enables early visibility of uncommitted data.

• Wait-Die (2PL) [3]: The Wait-Die variant of 2PL which
is mentioned in Section I.

We have put additional effort into finding available systems
for evaluation. However, we are not aware of any open-sourced
systems using transaction scheduling, including those applica-
ble to a similar single-node setup as in the aforementioned
solutions [16, 17, 32]. Therefore, we implement a centralized,
abort-free scheduling mechanism (C-Sched) in the DBx1000
framework. C-Sched has a dedicated scheduler thread that
uses a monolithic access map to arrange the execution of
transactions in different worker threads. Each worker uses a
private memory buffer to communicate with the scheduler in
a lock-free fashion. Before executing a transaction, the worker
copies its read/write set to the buffer to create a request.
The scheduler keeps polling the requests from each worker’s

buffer. If a transaction has no conflict with other running
transactions, the scheduler sets a flag in the buffer as a signal
for allowing execution. Otherwise, the scheduler will skip the
request and check it again in the next round of polling. The
worker can execute the transaction once it sees the flag. The
implementation is capable of processing 4.7 million requests
per second with 32 worker threads when each transaction has
one read variable and there is no contention between workers.

In order to provide sufficient insights about DecentSched’s
performance, we measure multiple performance metrics in the
evaluation, including transaction processing throughput, end-
to-end latency, and abort ratio. Specifically, for end-to-end
latency, we focus on tail latency. Therefore, we mainly show
the metrics of P99 latency. Through the experiments, we seek
answers to the following questions: (1) How does DecentSched
perform compared to other systems under different workload
patterns? (2) What are the impact factors of the performance
numbers? (3) How do the implementation and optimization
techniques affect the performance of DecentSched?

All the experiments are performed on a server on CloudLab
with dual 16-core Intel Xeon Gold 6142 CPUs and 384 GB of
RAM. The server runs Ubuntu Linux 22.04 with kernel version
5.15 LTS. DecentSched is configured with 1 ms epoch timeout
and 1024 per-worker transactions per epoch (whichever comes
first), and 16384 shared queues. These numbers are chosen
based on the observation that they can provide the most
balanced performance on the server.

A. YCSB Experiments

We first use YCSB [9] to evaluate the performance of
DecentSched. YCSB is a popular benchmark framework that
adopts realistic workload patterns that are representative of
large-scale Internet services. For all experiments in this sec-
tion, we use a large database table that contains 100 million
records. The default parameters are as follows unless otherwise
specified. Keys are generated following the Zipfian distribution
with θ = 0.99. Each transaction accesses 16 records in the data
store. Each access can be either a read or a write (update) and
the read/write ratio is 1:1. Based on YCSB workload F that
has transactional read-modify-write semantics, we adjust the
read/write ratio, transaction size, and key distribution in the
experiments. The results are summarized in Figure 5.

1) Write-intensive: The first YCSB experiment uses the
default setup mentioned above, which demonstrates a scenario
of skewed workloads with high contention and a high update
ratio. The results are shown in Figure 5a. All protocols perform
similarly with one thread. When the number of threads is
greater than one, DecentSched outperforms other protocols,
except for OCC when there are 16 threads. It achieves up to
1.7× the throughput of the second-best-performing protocol
(OCC, at 32 threads). This shows that DecentSched performs
well under highly contentious workloads. OCC performs well
with fewer than 16 threads. However, as the abort ratio
increases, its throughput degrades when the number of threads
goes beyond 16. Ord-Lock performs well with a low number
of threads (≤ 8). However, with more than 8 threads, Ord-

7

1 4 8 16 24 32
of threads

0.0

0.2

0.4

0.6

0.8

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0

1

2

3

4
P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(a) Write-intensive (default)

1 4 8 16 24 32
of threads

0.00

0.05

0.10

0.15

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0

20

40

60

P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(b) Long (64 requests/transaction)

1 4 8 16 24 32
of threads

0

1

2

3

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0.00

0.25

0.50

0.75

1.00
P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(c) Read-intensive (95% read, 5% write)

1 4 8 16 24 32
of threads

0

1

2

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0.00

0.02

0.04

0.06
P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(d) Random (uniform key distribution)

Fig. 5: YCSB benchmark results. The default configuration is described in §IV-A.

Lock suffers from excessive waiting on individual locks. The
drastically increasing latency limits the scalability of Ord-
Lock, which degrades the transaction processing throughput.
The throughput of C-Sched does not scale with more than 8
threads because the scheduler becomes the scalability bottle-
neck. A transaction must wait until the scheduler updates the
flag so that it can execute. With more concurrent transactions,
the scheduler is saturated in detecting conflicts and scheduling
transactions.

With more than 16 threads, DecentSched shows slightly
degraded throughput. The reason is that with a large number
of threads in contention, it costs a relatively longer time for a
transaction in DecentSched to perform dependency discovery.
In addition, the metadata of a transaction (including its depen-
dency set) has a larger size, which reduces cache efficiency.
Similar degradations are also shown in 2PL-based protocols.
Throughout the experiments, DecentSched maintains a low
end-to-end latency. Its latency is 5.7× lower than OCC, which
shows higher throughput than DecentSched with 16 threads.

2) Long Transactions: We then run a YCSB experiment
with the default parameters, except that the number of object
accesses per transaction is increased to 64 to measure the
performance of each protocol with long transactions that have
higher abort penalties. The results are shown in Figure 5b.
DecentSched retains its leading position in this experiment
as it reaches up to 2.1× the throughput of the second-
best-performing protocol (OCC, at 32 threads). However,
since each transaction accesses 64 objects, the queuing cost
of DecentSched is higher than that in the write-intensive
experiment, and the dependency discovery takes a longer time
to finish. As a result, the throughput of DecentSched decreases
when the number of threads is higher than 8. The throughput
of Ord-Lock is close to that of DecentSched with fewer than
4 threads. However, due to the increased waiting cost, it

suffers performance penalties and is outperformed by OCC
with more than 16 threads. Similar to that in the write-intensive
experiment, the throughput of C-Sched is saturated with
more than 4 threads. In addition to the increased scheduling
cost, as the number of concurrent transactions grows, the
larger read/write sets also incur higher memory access costs
for analyzing conflicts. The P99 latency metrics of all the
compared protocols are at the millisecond level with more
than 16 threads, while the worst P99 latency in DecentSched
is still under half a millisecond (with 32 threads).

3) Read-intensive: The third YCSB experiment is read-
intensive with 95% reads and 5% writes. The results are shown
in Figure 5c. Compared to the write-intensive experiment, this
experiment exhibits lower contention on commonly accessed
objects because most accesses to those objects are read-
only. Therefore, all protocols show higher throughput than
those in the write-intensive experiment. DecentSched shows
good scalability because the number of dependencies of a
transaction is small under low contention, so the cost of
dependency discovery is low. OCC also scales well because
of a low abort ratio.

4) Random Access: Finally, we run a YCSB experiment
using a uniformly random key distribution. Each transaction
randomly chooses 16 keys in the database (of 100 million
keys) to access so that conflicts are rare. Note that other
configurations are still default so this experiment is write-
intensive with 50% reads and 50% writes. The results of this
experiment are shown in Figure 5d. All protocols exhibit low
abort ratios and scale well. Ord-Lock exhibits the highest
throughput compared to other protocols. The reason is that
it has the lowest software overheads as it uses a simple
design that only maintains a reader-writer lock for each
object. The throughput of C-Sched scales better than those
in other YCSB experiments because most transactions do not

8

1 4 8 16 24 32
of threads

0

1

2

3

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0.0

0.1

0.2

0.3

P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(a) Eight warehouses (moderate contention)

1 4 8 16 24 32
of threads

0

1

2

3

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0.0

0.1

0.2

0.3

P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(b) Single warehouse (extreme contention)

1 4 8 16 24 32
of threads

0

1

2

3

Throughput (Mtxn/s)

1 4 8 16 24 32
of threads

0.0

0.1

0.2

0.3

P99 latency (ms)

1 4 8 16 24 32
of threads

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(c) Variable warehouses (low contention)

32 16 8 4 2 1
of warehouses

0

1

2

3

Throughput (Mtxn/s)

32 16 8 4 2 1
of warehouses

0.0

0.1

0.2

0.3

P99 latency (ms)

32 16 8 4 2 1
of warehouses

0

25

50

75

100
Abort ratio (%)

DecentSched C-Sched Ord-Lock OCC 2PL

(d) Fixed 16 threads (variable warehouses)

Fig. 6: TPC-C-NP benchmark results.

conflict so the scheduler is less pressured. DecentSched shows
good performance numbers because, most of the time, the
dependency set of a transaction is near-empty. OCC scales
well but it exhibits lower throughput numbers. This is due
to the nature that, unlike other protocols, OCC makes local
copies for read and write requests, then copies local updates
to the global data store when a transaction is committed. This
incurs extra memory accesses to and from the global store,
which limits its throughput.

B. TPC-C-NP Experiments

TPC-C [38] is an OLTP benchmark that has been the
industry standard. It simulates a warehouse-centered order
processing application and consists of nine database tables.
We use TPC-C benchmark to evaluate the performance of
DecentSched in more complex workload patterns.

In the experiments, we utilize the TPC-C benchmark in
DBx1000 which models two transaction types in standard
TPC-C benchmark—Payment and New Order. These two
types account for 88% transactions in a TPC-C benchmark
profile, which are representative. This modeling approach is
also widely adopted in previous works [19, 26, 31, 34, 43].
Experiments in this section are named TPC-C-NP. We run
TPC-C-NP with 50% Payment transactions and 50% New
Order transactions. Since the number of warehouses is the
main scaling factor, we start from experiments with eight
warehouses, which represents a relatively large-scale order
processing system with a moderate level of contention on our
testing system. Note that we follow the TPC-C manual and
randomly abort 1% of New Order transactions. These aborts
are induced by program logic and cannot be avoided.

1) Eight Warehouses (Moderate Contention): We first run a
TPC-C-NP experiment with eight warehouses. The results are
shown in Figure 6a. With no more than 8 threads, all protocols
perform similarly. They show very low abort ratios (around

0.5%) that are close to the overall proportion of random
aborts in New Order transactions. The reason is that with a
lower number of threads than the number of warehouses, most
requests can be served by local warehouses so conflicts are
rare. When the number of threads is higher than the number
of warehouses, transactions on different threads become more
contending. DecentSched outperforms other protocols by up
to 1.8× except OCC. With 24 or more threads, OCC achieves
up to 18% higher throughput than DecentSched, but it also has
2.7× higher P99 latency than DecentSched due to its frequent
abort-retry and backoff activities.

Similar to the trend shown in the YCSB experiments,
with more than 16 threads, Ord-Lock exhibits higher latency
metrics and suffers from excessive waiting while the sched-
uler in C-Sched is saturated. This makes the throughput of
Ord-Lock and C-Sched decrease significantly. For the case
of 2PL (Bamboo), with 32 threads, its abort ratio is low,
and its P99 tail latency is close to DecentSched’s. Bamboo
performs well because it allows transactions to read data from
other uncommitted transactions to gain higher parallelism.
However, it may lead to cascading aborts if an uncommitted
transaction fails to commit. In TPC-C, updates to warehouses
are committed by Payment transactions which only access
three objects. Therefore, most of the transactions can finish
execution quickly without causing aborts so that cascading
aborts are rare. On the contrary, Bamboo suffers from frequent
aborts in YCSB experiments because each transaction accesses
at least 16 objects, and cascading aborts are much more
frequent with a larger read/write set.

2) One Warehouse (Extreme Contention): We run the TPC-
C-NP experiment with only one warehouse to demonstrate the
performance of the protocols under extreme contention. In this
experiment, all transactions access the same warehouse so that
it represents the highest contention level of the TPC-C-NP

9

1 4 8 16 24 32
of threads

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Eight Warehouses

1 4 8 16 24 32
of threads

0

20

40

60

80

100
Single Warehouse

Queuing Scheduling Waiting Executing Committing

Fig. 7: The cost of each stage in DecentSched with varying
number of worker threads in TPC-C-NP.

experiment. The results are shown in Figure 6b. DecentSched
retains high throughput with more than one thread. However,
all the protocols stop scaling with more than 8 threads because
the parallelism they can exploit in New Order transactions
is overshadowed by the increasing contention on updating a
single warehouse in Payment transactions. Ord-Lock shows
constantly decreasing throughput as the number of threads
increases because it suffers from excessive waiting. The
throughput of C-Sched stops scaling beyond four threads
because the centralized scheduler once again becomes the
system bottleneck. The OCC variants perform well and their
opportunistic commit can help retain a high throughput.
However, their P99 tail latency numbers are up to 4.3× higher
than that of DecentSched.

3) Variable Warehouses (Low Contention): In this exper-
iment, the number of warehouses is equal to the number
of threads, which represents a linearly scaling system. The
results are shown in Figure 6c. Similar to the random YCSB
experiment showcased in Figure 5d, all the protocols exhibit
favorable scalability as the number of threads increases.
Notably, Ord-Lock stands out among the protocols, achieving
the highest throughput due to its minimal software overhead.
Despite OCC involving additional local copies, the TPC-C-
NP benchmark’s smaller data store size and improved access
locality (non-random) enable efficient data copying. As a
result, the throughput of OCC is less constrained compared
to that in the random YCSB experiment.

4) Fixed Threads: This TPC-C-NP experiment is with
a fixed number of 16 threads and different numbers of
warehouses, where the workload is more contentious with
fewer warehouses. It shows the performance of each protocol
under different contention levels. The results are shown in
Figure 6d. Although 16 warehouses help to reduce contention
in a workload, DecentSched reaches its peak throughput with
8 warehouses, and its throughput slightly degrades with 16 and
32 warehouses. The reason is that the database tables scale up
with more warehouses. Therefore, with more warehouses, the
transactions access more objects in the databases. DecentSched
successfully exploits parallelism under highly contentious
workloads. However, more queues are accessed with more
warehouses. As a result, the throughput of DecentSched with
16 warehouses is 13% lower than that with 8 warehouses.

5) Performance Breakdown: Figure 7 reports the time spent
in each DecentSched stage (as described in Section III). when

TABLE I: TPC-C-NP results of DecentSched with different
numbers of queues, including the normalized throughput and
latency values shown in parentheses.

of queues Throughput (Mtxn/s) Abort (%) P99 latency (µs)
256 0.68 (42%)

0.50

83 (319%)
1,024 1.14 (70%)

0.50

62 (238%)
4,096 1.49 (92%) 47 (181%)
16,384 1.62 (100%) 26 (100%)
65,536 1.60 (99%) 47 (181%)

262,144 1.45 (90%) 78 (300%)
1,048,576 0.71 (44%) 720 (2769%)

running the TPC-C-NP experiments with eight warehouses and
a single warehouse. As the number of worker threads grows,
the increasing contention between concurrent transactions
makes worker threads spend more time waiting. With the same
number of threads, the scheduling cost of DecentSched in the
experiment with one warehouse is relatively higher than that
in the experiment with eight warehouses. The reason is that
having only one warehouse also leads to increased contention,
which makes the dependency detection more expensive as a
transaction needs to scan most of the running transactions’
dependency set. That said, the combined queuing and schedul-
ing cost of DecentSched is between 19% to 35% in all the
experiments, and it remains low as the number of threads
increases.

6) Impact of Queue Sharing: DecentSched adopts queue
sharing that allocates a fixed number of queues for serving
an arbitrary number of objects. The number of queues in
DecentSched is performance-sensitive because having fewer
queues can increase the false positive ratio. To measure the
performance impact of queue sharing, we rerun the 16-thread
TPC-C-NP experiment with eight warehouses with different
numbers of queues. The results are shown in Table I. The
normalized throughput and latency results are also shown
in parentheses. As we change the number of queues, we
observe degraded throughput and increased P99 tail latency.
We chose to use 16384 queues in our evaluation, which
provides a good trade-off between a low false positive ratio and
a low memory access cost. When DecentSched is deployed on
different systems, it supports an automatic tuning phase which
can determine the best number of queues for the target system
specification and workload pattern.

C. Discussion

DecentSched achieves high throughput and low tail latency
with abort freedom, but it does not lead in all the experiments.
In this section, we summarize the key observations from
the experimental results and discuss the best-case workload
patterns for the compared protocols.

In workloads with very low contention (Figures 5d and 6c),
i.e., there are barely any write conflicts that cause waiting,
Ord-Lock achieves the best performance because of its low
constant cost. However, when the update ratio on contending
objects increases (Figure 5c), Ord-Lock starts suffering from
performance degradation. The problem is that Ord-Lock can

10

only make progress on one lock at a time during the locking
phase. Therefore, parallelism cannot be exploited before all
locks have been acquired. OCC-based protocols also achieve
high throughput because aborts are rare. However, the extra
data copying of OCC limits the maximum throughput of the
system when the data store is large or the access pattern
exhibits weak locality. DecentSched is able to retain high
throughput and low tail latency in this scenario. This is
achieved by its decentralized scheduling design. On the one
hand, the queuing phase in DecentSched has a low constant
cost. On the other hand, the scheduling in DecentSched incurs
minimal interaction between concurrent transactions. Once
the order is secured, the scheduling rules and opportunistic
execution can exploit parallelism immediately.

In more contentious workloads (Figures 5a, 5b, 6a, and 6b),
DecentSched shows good performance compared to the base-
line protocols in most experiments. Its advantage is especially
prominent when transactions are long, which causes a higher
abort penalty. Transactions in DecentSched have deterministic
global orders so that concurrency control induced aborts are
eliminated. Therefore, the end-to-end latency of DecentSched
is well controlled and the system throughput is maintained
at a high level. In some of these experiments, OCC-based
protocols can achieve higher throughput than DecentSched.
However, this comes with the cost of drastically higher end-
to-end latency, which is a key factor that contributes to the
system responsiveness.

V. RELATED WORK

a) Concurrency Control Protocols: There are abundant
studies on extending the original 2PL and OCC protocol. For
2PL, several approaches propose violating the original 2PL
protocol to extract more parallelism from the workloads [1,
18, 19, 23]. Bamboo [19] is a state-of-the-art solution which
allows transactions to read data from uncommitted transactions
and it uses extra metadata on locks to capture the new read-
uncommitted dependencies to ensure serializability. However,
it suffers from overwhelming cascading aborts with long
transactions. In the line of work on OCC, Silo [39, 45]
presents an efficient transaction ID allocation mechanism to
avoid contentions so that the validation phase of transactions
can be done efficiently. TicToc [43] targets the centralized
timestamp allocation bottleneck and provides a solution based
on decentralized and postponed timestamp allocation for better
system scalability. Several previous works exploit the isolation
provided by MVCC [25, 26, 30, 41]. They require maintaining
historical versions of data using extra space and actively
reclaiming memory [5], which is different from 2PL and OCC.
There are also a lot of works focusing on concurrency control
under a distributed setup [7, 14, 28, 40, 44]. They inevitably
induce aborts and retries of conflict transactions. DecentSched
lets individual transactions derive their serializable execution
order in a deadlock-free way. Concurrency control protocol
induced aborts are not possible with DecentSched when
processing deterministic transactions.

b) Transaction Scheduling: Instead of applying concur-
rency control to individual transactions, prior studies also pro-
posed processing transactions in batches and executing them
in generated schedules. This approach necessitates foreknowl-
edge of a transaction’s read and write key sets to generate
an optimal schedule. Consequently, this technique is primarily
suitable for deterministic transactions, and the likelihood of
concurrency control protocol-induced aborts is decreased. To
support general transactions without known read/write key
sets, reconnaissance queries may be utilized [33, 36, 37] at the
cost of abort-freedom. QueCC [32] uses separate scheduling
threads and executing threads to process transactions. It adopts
a priority queue oriented approach to dispatch transactions to
different partitions to avoid aborts. PWV [17] breaks trans-
actions into multiple atomic pieces and builds a dependency
graph to schedule and commit transactions in finer granularity.
Similar ideas are also applied in various other works [13, 16,
29, 31] where transactions are executed in finer-grained pieces
and/or separate phases. This type of approach is also actively
used in distributed systems that require high determinism
to reduce the cost of inter-node synchronization and crash
recovery [8, 27, 37], which is out of the scope of this paper.
DecentSched adopts the idea of transaction scheduling but the
scheduling is done by individual transactions instead of large
batches.

VI. CONCLUSION

In this paper, we present DecentSched, a new concur-
rency control protocol that provides high determinism for
deterministic transaction processing systems. It eliminates
aborts induced by concurrency control protocols with low cost
using its queuing-based approach and decentralized scheduling
algorithm. Extensive evaluations show that it can outper-
form state-of-the-art concurrency control protocols with higher
throughput and lower tail latency in both YCSB and TPC-C
benchmarks.

REFERENCES

[1] Divyakant Agrawal, Amr El Abbadi, Richard Jeffers,
and Lijing Lin. “Ordered shared locks for real-time
databases”. In: The VLDB Journal 4.1 (1995), pp. 87–
126.

[2] Bamboo Source Code. https://github.com/ScarletGuo/
Bamboo-Public.

[3] Philip A. Bernstein and Nathan Goodman. “Concur-
rency Control in Distributed Database Systems”. In:
ACM Comput. Surv. 13.2 (1981), pp. 185–221.

[4] Philip A. Bernstein, Vassco Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman Publish-
ing Co., Inc., 1987.

[5] Jan Böttcher, Viktor Leis, Thomas Neumann, and Al-
fons Kemper. “Scalable Garbage Collection for In-
Memory MVCC Systems”. In: Proc. VLDB Endow. 13.2
(2019), pp. 128–141.

11

[6] M.J. Carey. “Improving the Performance of an Opti-
mistic Concurrency Control Algorithm Through Times-
tamps and Versions”. In: IEEE Transactions on Software
Engineering SE-13.6 (1987), pp. 746–751.

[7] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. “Fast and General Distributed Transac-
tions Using RDMA and HTM”. In: Proceedings of the
Eleventh European Conference on Computer Systems.
2016.

[8] Pierpaolo Cincilla, Sébastien Monnet, and Marc
Shapiro. “Gargamel: boosting DBMS performance by
parallelising write transactions”. In: 2012 IEEE 18th
International Conference on Parallel and Distributed
Systems. IEEE. 2012, pp. 572–579.

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. “Benchmark-
ing Cloud Serving Systems with YCSB”. In: Proceed-
ings of the 1st ACM Symposium on Cloud Computing
(SoCC’10). 2010, pp. 143–154.

[10] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
“Spanner: Google’s Globally Distributed Database”. In:
ACM Trans. Comput. Syst. 31.3 (2013).

[11] Tudor David, Rachid Guerraoui, and Vasileios Trig-
onakis. “Everything You Always Wanted to Know
about Synchronization but Were Afraid to Ask”. In:
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. 2013, pp. 33–48.

[12] DBx1000 Source Code. https : / / github . com / yxymit /
DBx1000.

[13] Bailu Ding, Lucja Kot, and Johannes Gehrke. “Im-
proving Optimistic Concurrency Control through Trans-
action Batching and Operation Reordering”. In: Proc.
VLDB Endow. 12.2 (2018), pp. 169–182.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Edmund
B. Nightingale, Matthew Renzelmann, Alex Shamis,
Anirudh Badam, and Miguel Castro. “No Compromises:
Distributed Transactions with Consistency, Availability,
and Performance”. In: Proceedings of the 25th Sympo-
sium on Operating Systems Principles. 2015, pp. 54–70.

[15] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.
“The Notions of Consistency and Predicate Locks in a
Database System”. In: Commun. ACM 19.11 (1976),
pp. 624–633.

[16] Jose M. Faleiro and Daniel J. Abadi. “Rethinking Se-
rializable Multiversion Concurrency Control”. In: Proc.
VLDB Endow. 8.11 (2015), pp. 1190–1201.

[17] Jose M. Faleiro, Daniel J. Abadi, and Joseph M.
Hellerstein. “High Performance Transactions via Early

Write Visibility”. In: Proc. VLDB Endow. 10.5 (2017),
pp. 613–624.

[18] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph
Tucek, and Alistair Veitch. “Controlled Lock Violation”.
In: Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data. 2013,
pp. 85–96.

[19] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu.
“Releasing Locks As Early As You Can: Reducing Con-
tention of Hotspots by Violating Two-Phase Locking”.
In: Proceedings of the 2021 International Conference
on Management of Data. 2021, pp. 658–670.

[20] Theo Härder. “Observations on Optimistic Concurrency
Control Schemes”. In: Inf. Syst. 9.2 (1984), pp. 111–
120.

[21] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. “Opportunities for Optimism
in Contended Main-Memory Multicore Transactions”.
In: Proc. VLDB Endow. 13.5 (2020), pp. 629–642.

[22] jemalloc. https://github.com/jemalloc/jemalloc.
[23] Hideaki Kimura, Goetz Graefe, and Harumi A Kuno.

“Efficient locking techniques for databases on modern
hardware.” In: ADMS@ VLDB. Citeseer. 2012, pp. 1–
12.

[24] H. T. Kung and John T. Robinson. “On Optimistic
Methods for Concurrency Control”. In: ACM Trans.
Database Syst. 6.2 (1981), pp. 213–226.

[25] Justin Levandoski, David Lomet, Sudipta Sengupta,
Ryan Stutsman, and Rui Wang. “Multi-Version Range
Concurrency Control in Deuteronomy”. In: Proc. VLDB
Endow. 8.13 (2015), pp. 2146–2157.

[26] Hyeontaek Lim, Michael Kaminsky, and David G.
Andersen. “Cicada: Dependably Fast Multi-Core In-
Memory Transactions”. In: Proceedings of the 2017
ACM International Conference on Management of
Data. 2017, pp. 21–35.

[27] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Mad-
den. “Aria: A Fast and Practical Deterministic OLTP
Database”. In: Proc. VLDB Endow. 13.12 (2020),
pp. 2047–2060.

[28] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. “Extracting More Concurrency from Dis-
tributed Transactions”. In: Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation. 2014, pp. 479–494.

[29] Neha Narula, Cody Cutler, Eddie Kohler, and Robert
Morris. “Phase Reconciliation for Contended In-
Memory Transactions”. In: Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation. 2014, pp. 511–524.

[30] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. “Fast Serializable Multi-Version Concurrency Con-
trol for Main-Memory Database Systems”. In: Proceed-
ings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data. 2015, pp. 677–689.

12

[31] Guna Prasaad, Alvin Cheung, and Dan Suciu. “Han-
dling Highly Contended OLTP Workloads Using Fast
Dynamic Partitioning”. In: Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data. 2020, pp. 527–542.

[32] Thamir M. Qadah and Mohammad Sadoghi. “QueCC:
A Queue-Oriented, Control-Free Concurrency Archi-
tecture”. In: Proceedings of the 19th International
Middleware Conference. 2018, pp. 13–25.

[33] Dai Qin, Angela Demke Brown, and Ashvin Goel.
“Caracal: Contention Management with Deterministic
Concurrency Control”. In: Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples. 2021, pp. 180–194.

[34] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. “Design
Principles for Scaling Multi-Core OLTP Under High
Contention”. In: Proceedings of the 2016 International
Conference on Management of Data. 2016, pp. 1583–
1598.

[35] Kun Ren, Dennis Li, and Daniel J. Abadi. “SLOG: Se-
rializable, Low-Latency, Geo-Replicated Transactions”.
In: Proc. VLDB Endow. 12.11 (2019), pp. 1747–1761.

[36] Kun Ren, Alexander Thomson, and Daniel J. Abadi.
“An Evaluation of the Advantages and Disadvantages
of Deterministic Database Systems”. In: Proc. VLDB
Endow. 7.10 (2014), pp. 821–832.

[37] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
“Calvin: Fast Distributed Transactions for Partitioned
Database Systems”. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data. 2012, pp. 1–12.

[38] TPC-C Benchmark. http://www.tpc.org/tpc documents
current versions/pdf/tpc-c v5.11.0.pdf.

[39] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. “Speedy Transactions
in Multicore In-Memory Databases”. In: Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. 2013, pp. 18–32.

[40] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. “Fast In-Memory Transaction Processing
Using RDMA and HTM”. In: Proceedings of the 25th
Symposium on Operating Systems Principles. 2015,
pp. 87–104.

[41] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and
Andrew Pavlo. “An Empirical Evaluation of In-Memory
Multi-Version Concurrency Control”. In: Proc. VLDB
Endow. 10.7 (2017), pp. 781–792.

[42] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. “Staring into the
Abyss: An Evaluation of Concurrency Control with One
Thousand Cores”. In: Proc. VLDB Endow. 8.3 (2014),
pp. 209–220.

[43] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and
Srinivas Devadas. “TicToc: Time Traveling Optimistic
Concurrency Control”. In: Proceedings of the 2016 In-

ternational Conference on Management of Data. 2016,
pp. 1629–1642.

[44] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. “Building
Consistent Transactions with Inconsistent Replication”.
In: ACM Trans. Comput. Syst. 35.4 (2018).

[45] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara
Liskov. “Fast Databases with Fast Durability and Re-
covery through Multicore Parallelism”. In: Proceedings
of the 11th USENIX Conference on Operating Systems
Design and Implementation. 2014, pp. 465–477.

13

